Embeddings
Translate complex data into numerical vector representations
Input: Text, images, or audio
Output: Embeddings
Embedding models, often referred to as embeddings or embedding vectors, allow you to convert complex data into vectors while preserving meaningful relationships between them.
Embeddings are a powerful tool in the world of machine learning, acting as a bridge between complex data and the mathematical world that machine learning models operate in.
Data lives in its own world. For example, text is a sequence of words, images are a grid of pixels, and audio is a wave of sound. These are all very different from the numbers that machine learning models use.
Embedding models take these complex data types and transform them into numerical vectors. These vectors are like condensed summaries of the data, capturing its important aspects in a way that the model can understand.
By using these vectors, machine learning models can now reason about the data, compare different pieces of information, and perform tasks like classification, similarity search, and prediction.
The initialization code used in the following examples is outlined in detail on the client installation page.
Text Embeddings
Below is an example of how you would create text embeddings using the Cohere Embed-v3 model.
The Cohere Embed-v3 model requires an input_type
parameter to be specified, which can be set using one of the following values:
search_document
(default): For texts (documents) intended to be stored in a vector database.search_query
: For search queries to find the most relevant documents in a vector database.classification
: If the embeddings are used as input for a classification system.clustering
: If the embeddings are used for text clustering.
- Python
- JavaScript (REST)
- NodeJS
- Java
- PHP
- cURL
#################################################################################################################
# In this section, we set the user authentication, user and app ID, model details, and the text we want
# to provide as an input. Change these strings to run your own example.
#################################################################################################################
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = "YOUR_PAT_HERE"
# Specify the correct user_id/app_id pairings
# Since you're making inferences outside your app's scope
USER_ID = "cohere"
APP_ID = "embed"
# Change these to whatever model and text URL you want to use
MODEL_ID = "cohere-embed-english-v3_0"
MODEL_VERSION_ID = "e2dd848faf454fbda85c26cf89c4926e"
RAW_TEXT = "Give me an exotic yet tasty recipe for some noodle dish"
# To use a hosted text file, assign the URL variable
# TEXT_FILE_URL = "https://samples.clarifai.com/negative_sentence_12.txt"
# Or, to use a local text file, assign the location variable
# TEXT_FILE_LOCATION = "YOUR_TEXT_FILE_LOCATION_HERE"
############################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
############################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
from google.protobuf.struct_pb2 import Struct
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
params = Struct()
params.update(
{
"input_type": "search_query"
}
)
metadata = (("authorization", "Key " + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID)
# To use a local text file, uncomment the following lines
# with open(TEXT_FILE_LOCATION, "rb") as f:
# file_bytes = f.read()
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
model_id=MODEL_ID,
version_id=MODEL_VERSION_ID, # This is optional. Defaults to the latest model version
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
text=resources_pb2.Text(
raw=RAW_TEXT
# url=TEXT_FILE_URL
# raw=file_bytes
)
)
)
],
model=resources_pb2.Model(
model_version=resources_pb2.ModelVersion(
output_info=resources_pb2.OutputInfo(params=params)
)
),
),
metadata=metadata,
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response.status)
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description )
# Uncomment this line to print the raw output
# print(post_model_outputs_response)
# Since we have one input, one output will exist here
output = post_model_outputs_response.outputs[0].data.embeddings
print(output)
<!--index.html file-->
<script>
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// In this section, we set the user authentication, user and app ID, model details, and the text we want
// to provide as an input. Change these strings to run your own example.
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Your PAT (Personal Access Token) can be found in the Account's Security section
const PAT = "YOUR_PAT_HERE";
// Specify the correct user_id/app_id pairings
// Since you're making inferences outside your app's scope
const USER_ID = "cohere";
const APP_ID = "embed";
// Change these to whatever model and text you want to use
const MODEL_ID = "cohere-embed-english-v3_0";
const MODEL_VERSION_ID = "e2dd848faf454fbda85c26cf89c4926e";
const RAW_TEXT = "Give me an exotic yet tasty recipe for some noodle dish";
// To use a hosted text file, assign the URL variable
// const TEXT_FILE_URL = 'https://samples.clarifai.com/negative_sentence_12.txt'
///////////////////////////////////////////////////////////////////////////////////
// YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
///////////////////////////////////////////////////////////////////////////////////
const raw = JSON.stringify({
"inputs": [
{
"data": {
"text": {
"raw": RAW_TEXT
// "url": TEXT_FILE_URL
}
}
}
],
"model": {
"model_version": {
"output_info": {
"params": {
"input_type": "search_query"
}
}
}
}
});
const requestOptions = {
method: "POST",
headers: {
"Accept": "application/json",
"Authorization": "Key " + PAT
},
body: raw
};
fetch(`https://api.clarifai.com/v2/users/${USER_ID}/apps/${APP_ID}/models/${MODEL_ID}/versions/${MODEL_VERSION_ID}/outputs`, requestOptions)
.then(response => response.text())
.then(result => console.log(result))
.catch(error => console.log("error", error));
</script>
//index.js file
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// In this section, we set the user authentication, user and app ID, model details, and the text we want
// to provide as an input. Change these strings to run your own example.
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Your PAT (Personal Access Token) can be found in the Account's Security section
const PAT = "YOUR_PAT_HERE";
// Specify the correct user_id/app_id pairings
// Since you're making inferences outside your app's scope
const USER_ID = "cohere";
const APP_ID = "embed";
// Change these to whatever model and text you want to use
const MODEL_ID = "cohere-embed-english-v3_0";
const MODEL_VERSION_ID = "e2dd848faf454fbda85c26cf89c4926e";
const RAW_TEXT = "Give me an exotic yet tasty recipe for some noodle dish";
// To use a hosted text file, assign the URL variable
// const TEXT_FILE_URL = "https://samples.clarifai.com/negative_sentence_12.txt"
// Or, to use a local text file, assign the location variable
// TEXT_FILE_LOCATION = "YOUR_TEXT_FILE_LOCATION_HERE"
/////////////////////////////////////////////////////////////////////////////
// YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
/////////////////////////////////////////////////////////////////////////////
const { ClarifaiStub, grpc } = require("clarifai-nodejs-grpc");
const stub = ClarifaiStub.grpc();
// This will be used by every Clarifai endpoint call
const metadata = new grpc.Metadata();
metadata.set("authorization", "Key " + PAT);
// To use a local text file, uncomment the following lines
// const fs = require("fs");
// const fileBytes = fs.readFileSync(TEXT_FILE_LOCATION);
stub.PostModelOutputs(
{
user_app_id: {
"user_id": USER_ID,
"app_id": APP_ID
},
model_id: MODEL_ID,
version_id: MODEL_VERSION_ID, // This is optional. Defaults to the latest model version
inputs: [
{
"data": {
"text": {
"raw": RAW_TEXT
// url: TEXT_FILE_URL
// raw: fileBytes
}
}
}
],
"model": {
"model_version": {
"output_info": {
"params": {
"input_type": "search_query"
}
}
}
}
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post models failed, status: " + response.status.description);
}
// Since we have one input, one output will exist here.
const output = response.outputs[0].data.embeddings;
console.log(output);
}
);
package com.clarifai.example;
import com.clarifai.grpc.api.*;
import com.clarifai.channel.ClarifaiChannel;
import com.clarifai.credentials.ClarifaiCallCredentials;
import com.clarifai.grpc.api.status.StatusCode;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import com.google.protobuf.ByteString;
import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
public class ClarifaiExample {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// In this section, we set the user authentication, user and app ID, model details, and the text we want
// to provide as an input. Change these strings to run your own example.
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Your PAT (Personal Access Token) can be found in the portal under Authentication
static final String PAT = "YOUR_PAT_HERE";
// Specify the correct user_id/app_id pairings
// Since you're making inferences outside your app's scope
static final String USER_ID = "cohere";
static final String APP_ID = "embed";
// Change these to whatever model you want to use
static final String MODEL_ID = "cohere-embed-english-v3_0";
static final String MODEL_VERSION_ID = "e2dd848faf454fbda85c26cf89c4926e";
static final String RAW_TEXT = "Give me an exotic yet tasty recipe for some noodle dish";
// To use a hosted text file, assign the URL variable
// static final String TEXT_FILE_URL = "https://samples.clarifai.com/negative_sentence_12.txt";
// Or, to use a local text file, assign the location variable
// static final String TEXT_FILE_LOCATION = "YOUR_TEXT_FILE_LOCATION_HERE";
///////////////////////////////////////////////////////////////////////////////////
// YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
///////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) throws IOException {
V2Grpc.V2BlockingStub stub = V2Grpc.newBlockingStub(ClarifaiChannel.INSTANCE.getGrpcChannel())
.withCallCredentials(new ClarifaiCallCredentials(PAT));
Struct.Builder params = Struct.newBuilder()
.putFields("input_type", Value.newBuilder().setStringValue("search_query").build());
MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
PostModelOutputsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setUserId(USER_ID).setAppId(APP_ID))
.setModelId(MODEL_ID)
.setVersionId(MODEL_VERSION_ID) // This is optional. Defaults to the latest model version.
.addInputs(
Input.newBuilder().setData(
Data.newBuilder().setText(
Text.newBuilder().setRaw(RAW_TEXT)
// Text.newBuilder().setUrl(TEXT_FILE_URL)
// Text.newBuilder().setRawBytes(ByteString.copyFrom(Files.readAllBytes(
// new File(TEXT_FILE_LOCATION).toPath()
// )))
)
)
)
.setModel(Model.newBuilder()
.setModelVersion(ModelVersion.newBuilder()
.setOutputInfo(OutputInfo.newBuilder().setParams(params))
)
)
.build()
);
if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}
// Since we have one input, one output will exist here
Output output = postModelOutputsResponse.getOutputs(0);
System.out.println(output.getData().getEmbeddingsList());
}
}
<?php
require __DIR__ . "/vendor/autoload.php";
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// In this section, we set the user authentication, user and app ID, model details, and the text we want
// to provide as an input. Change these strings to run your own example.
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Your PAT (Personal Access Token) can be found in the Account's Security section
$PAT = "YOUR_PAT_HERE";
// Specify the correct user_id/app_id pairings
// Since you're making inferences outside your app's scope
$USER_ID = "cohere";
$APP_ID = "embed";
// Change these to whatever model and image URL you want to use
$MODEL_ID = "cohere-embed-english-v3_0";
$MODEL_VERSION_ID = "e2dd848faf454fbda85c26cf89c4926e";
$RAW_TEXT = "Give me an exotic yet tasty recipe for some noodle dish!";
# To use a hosted text file, assign the URL variable
# $TEXT_FILE_URL = "https://samples.clarifai.com/negative_sentence_12.txt";
# Or, to use a local text file, assign the location variable
# $TEXT_FILE_LOCATION = "YOUR_TEXT_FILE_LOCATION_HERE";
///////////////////////////////////////////////////////////////////////////////////
// YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
///////////////////////////////////////////////////////////////////////////////////
use Clarifai\ClarifaiClient;
use Clarifai\Api\Data;
use Clarifai\Api\Text;
use Clarifai\Api\Input;
use Clarifai\Api\Model;
use Clarifai\Api\ModelVersion;
use Clarifai\Api\OutputInfo;
use Clarifai\Api\PostModelOutputsRequest;
use Clarifai\Api\Status\StatusCode;
use Clarifai\Api\UserAppIDSet;
use Google\Protobuf\Struct;
$client = ClarifaiClient::grpc();
$metadata = ["Authorization" => ["Key " . $PAT]];
$userDataObject = new UserAppIDSet([
"user_id" => $USER_ID,
"app_id" => $APP_ID,
]);
// create Struct instance
$params = new Struct();
$params->input_type = "search_query";
//$textData = file_get_contents($TEXT_FILE_LOCATION); // Get the text bytes data from the location
// Let's make a RPC call to the Clarifai platform. It uses the opened gRPC client channel to communicate a
// request and then wait for the response
[$response, $status] = $client->PostModelOutputs(
// The request object carries the request along with the request status and other metadata related to the request itself
new PostModelOutputsRequest([
"user_app_id" => $userDataObject,
"model_id" => $MODEL_ID,
"version_id" => $MODEL_VERSION_ID, // This is optional. Defaults to the latest model version
"inputs" => [
new Input([
// The Input object wraps the Data object in order to meet the API specification
"data" => new Data([
// The Data object is constructed around the Text object. It offers a container that has additional text independent
// metadata. In this particular use case, no other metadata is needed to be specified
"text" => new Text([
// In the Clarifai platform, a text is defined by a special Text object
"raw" => $RAW_TEXT,
// "url" => $TEXT_FILE_URL
// "raw" => $textData
]),
]),
]),
],
"model" => new Model([
"model_version" => new ModelVersion([
"output_info" => new OutputInfo(["params" => $params]),
]),
]),
]),
$metadata
)
->wait();
// A response is returned and the first thing we do is check the status of it
// A successful response will have a status code of 0; otherwise, there is some error
if ($status->code !== 0) {
throw new Exception("Error: {$status->details}");
}
// In addition to the RPC response status, there is a Clarifai API status that reports if the operation was a success or failure
// (not just that the communication was successful)
if ($response->getStatus()->getCode() != StatusCode::SUCCESS) {
throw new Exception("Failure response: " . $response->getStatus()->getDescription() . " " . $response->getStatus()->getDetails());
}
// Since we have one input, one output will exist here
$output = $response->getOutputs()[0]->getData()->getEmbeddings();
print_r($output);
?>
curl -X POST "https://api.clarifai.com/v2/users/cohere/apps/embed/models/cohere-embed-english-v3_0/versions/e2dd848faf454fbda85c26cf89c4926e/outputs" \
-H "Authorization: Key YOUR_PAT_HERE" \
-H "Content-Type: application/json" \
-d '{
"inputs": [
{
"data": {
"text": {
"raw": "Give me an exotic yet tasty recipe for some noodle dish"
}
}
}
],
"model": {
"model_version": {
"output_info": {
"params": {
"input_type":"search_query"
}
}
}
}
}'
Text Output Example
[vector: 0.025470778346061707
vector: 0.027972102165222168
vector: -0.01801256835460663
vector: -0.025394519791007042
vector: 0.007034968119114637
vector: -0.0002650028618518263
vector: -0.0037653285544365644
vector: -0.0023831194266676903
vector: -0.03773335739970207
vector: 0.05649327486753464
vector: 0.01828710362315178
vector: 0.00324104237370193
vector: -0.015084192156791687
vector: -0.0007111228187568486
vector: -0.009479095228016376
vector: -0.016197584569454193
vector: 0.01801256835460663
vector: 0.017738033086061478
vector: 0.027041731402277946
vector: 0.005357252433896065
vector: 0.0050331479869782925
vector: 0.028963478282094002
vector: -0.012285456992685795
vector: -0.035171028226614
vector: 0.041058287024497986
vector: -0.030442919582128525
vector: -0.0278653372079134
vector: -0.00623805308714509
vector: 0.011621995829045773
vector: 0.001777807017788291
vector: -0.005467828828841448
vector: 0.01667039655148983
vector: 0.05164314806461334
vector: 0.018698906525969505
vector: -0.07211128622293472
vector: -0.030061621218919754
vector: 0.0001396507868776098
vector: -0.01699068769812584
vector: -0.06198398023843765
vector: 0.05929963290691376
vector: 0.037702854722738266
vector: -0.020605402067303658
vector: -0.06363119184970856
vector: -0.004384939558804035
vector: -0.051002565771341324
vector: -0.021947575733065605
vector: 0.02457091398537159
vector: 0.006009273696690798
vector: 0.00549452006816864
vector: 0.008258937858045101
vector: 0.018912434577941895
vector: -0.005502145737409592
vector: 0.01715845987200737
vector: 0.009242690168321133
vector: -0.020818930119276047
vector: -0.009837516583502293
vector: 0.01894293911755085
vector: 0.005456389859318733
vector: 0.038556963205337524
vector: -0.041485339403152466
vector: -0.0633261501789093
vector: -0.012338838540017605
vector: 0.05271078646183014
vector: -0.00013786344788968563
vector: 0.010684000328183174
vector: 0.0098756467923522
vector: 0.001827375846914947
vector: 0.014962175861001015
vector: -0.006932017393410206
vector: 0.01074500847607851
vector: 0.0010018633911386132
vector: -0.01212531141936779
vector: 0.018043072894215584
vector: -0.09224387258291245
vector: -0.013825904577970505
vector: 0.057499904185533524
vector: 0.023579536005854607
vector: -0.02873469889163971
vector: -0.011759264394640923
vector: -0.03297474607825279
vector: -0.0017129861516878009
vector: 0.020147843286395073
vector: 0.020803678780794144
vector: -0.0855330154299736
vector: 0.013986051082611084
vector: -0.09023061394691467
vector: -0.004651848692446947
vector: 0.0305801872164011
vector: 0.007992029190063477
vector: 0.049172330647706985
vector: 0.0025413583498448133
vector: -0.022039087489247322
vector: -0.0013612377224490047
vector: 0.052253227680921555
vector: 0.03312726318836212
vector: -0.008724123239517212
vector: -0.01790580525994301
vector: -0.08461789786815643
vector: 0.04252247512340546
vector: 0.041271813213825226
vector: 0.07009802758693695
vector: -0.08187253773212433
vector: 0.11414569616317749
vector: -0.01561801042407751
vector: -0.0036909752525389194
vector: 0.03285272791981697
vector: 0.03279172256588936
vector: 0.015030810609459877
vector: -0.007652672939002514
vector: -0.015251963399350643
vector: -0.00938758347183466
vector: 0.015938302502036095
vector: 0.0018321421230211854
vector: -0.003012262750416994
vector: -0.028658440336585045
vector: 0.00906729232519865
vector: -0.017082199454307556
vector: -0.019308986142277718
vector: 0.003138091415166855
vector: -0.007309503387659788
vector: 0.02739252708852291
vector: 0.023366007953882217
vector: 0.005769055336713791
vector: 0.016090821474790573
vector: -0.042674995958805084
vector: -0.023823566734790802
vector: -0.030778462067246437
vector: -0.022908449172973633
vector: 0.0362691693007946
vector: -0.012399846687912941
vector: -0.06302111595869064
vector: 0.007019716314971447
vector: 0.08419083803892136
vector: 0.02656892128288746
vector: 0.02446414902806282
vector: -0.016853420063853264
vector: 0.03079371526837349
vector: -0.010554359294474125
vector: -0.0035651465877890587
vector: -0.0048844413831830025
vector: 0.029954856261610985
vector: -0.028871966525912285
vector: 0.005776681005954742
vector: 0.023625291883945465
vector: -0.02289319783449173
vector: 0.02571481093764305
vector: 0.014779152348637581
vector: -0.011530484072864056
vector: -0.01561801042407751
vector: -0.004785303492099047
vector: -0.03663521632552147
vector: -0.023228740319609642
vector: 0.018927687779068947
vector: -0.01635010540485382
vector: -0.031968116760253906
vector: 0.007694615516811609
vector: -0.03880099579691887
vector: 0.019827552139759064
vector: -0.02527250349521637
vector: 0.011812645941972733
vector: -0.06326514482498169
vector: -0.019308986142277718
vector: -0.00752303097397089
vector: -0.012155815027654171
vector: 0.0037081337068229914
vector: 0.005418260116130114
vector: 0.057011839002370834
vector: 0.03416439890861511
vector: 0.013025176711380482
vector: 0.006039777770638466
vector: 0.040295686572790146
vector: -0.02879570797085762
vector: -0.052802298218011856
vector: -0.02136800065636635
vector: 0.0009060619631782174
vector: -0.003061831695958972
vector: 0.026507912203669548
vector: 0.005151350516825914
vector: -0.020757922902703285
vector: 0.047494616359472275
vector: 0.012110059149563313
vector: -0.0232744961977005
vector: 0.0005414446932263672
vector: -0.002543264999985695
vector: -0.016380608081817627
vector: 0.009097795933485031
vector: -0.01482490822672844
vector: 0.04380363970994949
vector: 0.005200919695198536
vector: 0.0028940599877387285
vector: -0.0064058247953653336
vector: 0.0072713736444711685
vector: -0.05149063095450401
vector: 0.03614715486764908
vector: 0.03712327778339386
vector: -0.014977428130805492
vector: -0.01872941106557846
vector: 0.001053338753990829
vector: 0.0007606917060911655
vector: -0.059238627552986145
vector: -0.005036960821598768
vector: -0.01607557013630867
vector: 0.010348456911742687
vector: 0.011629622429609299
vector: 0.007809005212038755
vector: -0.014115692116320133
vector: 0.002140994416549802
vector: 0.007141732145100832
vector: 0.05255826562643051
vector: 0.01502318400889635
vector: -0.022542402148246765
vector: 0.015724774450063705
vector: 0.0014441702514886856
vector: -0.060001224279403687
vector: -0.03718428686261177
vector: 0.04481026902794838
vector: -0.040936268866062164
vector: 0.031098753213882446
vector: 0.021825559437274933
vector: -0.021245986223220825
vector: 0.023823566734790802
vector: 0.01682291552424431
vector: 0.028963478282094002
vector: -0.015434986911714077
vector: 0.057072848081588745
vector: 0.0012211103457957506
vector: -0.012514236383140087
vector: -0.02132224477827549
vector: 0.013436979614198208
vector: 0.050087448209524155
vector: -0.11438972502946854
vector: -0.0063753207214176655
vector: -0.03620816022157669
vector: -0.03599463403224945
vector: -0.054144471883773804
vector: 0.004487890284508467
vector: -0.037641845643520355
vector: 0.006680360063910484
vector: -0.004091339185833931
vector: 0.012895535677671432
vector: 0.016045065596699715
vector: 0.01856163889169693
vector: -0.04160735756158829
vector: -0.010973787866532803
vector: 0.0026481221430003643
vector: -0.049385856837034225
vector: -0.009509599767625332
vector: 0.017082199454307556
vector: -0.030381912365555763
vector: -0.06680360436439514
vector: 0.026157118380069733
vector: -0.014733396470546722
vector: 0.04807418957352638
vector: -0.04676252231001854
vector: 0.016594136133790016
vector: 0.043925654143095016
vector: 0.028856715187430382
vector: 0.028826210647821426
vector: -0.018744662404060364
vector: 0.049233339726924896
vector: -0.036238666623830795
vector: 0.13226503133773804
vector: 0.04627445712685585
vector: 0.055181603878736496
vector: -0.030000612139701843
vector: -0.013208200223743916
vector: 0.005608909763395786
vector: 0.004198103211820126
vector: -0.023243991658091545
vector: -0.005879632197320461
vector: 0.025897834450006485
vector: 0.062380529940128326
vector: -4.426644227351062e-05
vector: -0.04334608092904091
vector: -0.03126652538776398
vector: -0.044901780784130096
vector: -0.02603510208427906
vector: 0.059116609394550323
vector: -0.030763210728764534
vector: -0.047220081090927124
vector: -0.0023507089354097843
vector: 0.06906089186668396
vector: 0.04133282229304314
vector: -0.01889718323945999
vector: -0.03151055797934532
vector: -0.026858707889914513
vector: 0.005913949105888605
vector: -0.01618233323097229
vector: -0.018058324232697487
vector: 0.018317608162760735
vector: 0.028078865259885788
vector: 0.039472080767154694
vector: 0.02624863013625145
vector: -0.013513240031898022
vector: 0.016685647889971733
vector: 0.006081720348447561
vector: 0.0822385847568512
vector: 0.03928905725479126
vector: -0.0267824474722147
vector: -0.0018464408349245787
vector: 0.010432342998683453
vector: -0.0047624255530536175
vector: 0.01790580525994301
vector: -0.05124659836292267
vector: 0.004022705368697643
vector: 0.03437792509794235
vector: -0.010165433399379253
vector: 0.023305000737309456
vector: -0.0026385898236185312
vector: -0.003769141621887684
vector: -0.017997317016124725
vector: -0.0025947403628379107
vector: 0.034286413341760635
vector: 0.05670680105686188
vector: -0.02348802424967289
vector: -0.0087927570566535
vector: -0.0006062655593268573
vector: 0.03306625783443451
vector: -0.012392220087349415
vector: -0.06079432740807533
vector: 0.033035751432180405
vector: 0.10035791993141174
vector: 0.016761908307671547
vector: 0.014489365741610527
vector: 0.052954819053411484
vector: -0.05207020416855812
vector: -0.010455220937728882
vector: -0.008922399021685123
vector: 0.015663767233490944
vector: 0.015427361242473125
vector: 0.00767173757776618
vector: 0.03629967197775841
vector: -0.024220118299126625
vector: 0.04850124567747116
vector: 0.0027262885123491287
vector: -0.014054684899747372
vector: 0.0007297111442312598
vector: -0.009913776069879532
vector: -0.025287754833698273
vector: -0.006924391258507967
vector: -0.004388752393424511
vector: -0.013536117970943451
vector: 0.01981230080127716
vector: -0.0557306744158268
vector: -0.02007158473134041
vector: -0.03036665916442871
vector: -0.026431653648614883
vector: -0.012171067297458649
vector: -0.01309381052851677
vector: -0.016151828691363335
vector: 0.023945583030581474
vector: 0.01531297154724598
vector: 0.013742019422352314
vector: 0.030183635652065277
vector: 0.022115347906947136
vector: -0.05640176311135292
vector: -0.018927687779068947
vector: 0.06350917369127274
vector: -0.027514541521668434
vector: -0.010577237233519554
vector: -0.011797393672168255
vector: -0.012819275259971619
vector: -0.03202912211418152
vector: 0.06375321000814438
vector: 0.019614025950431824
vector: -0.018363364040851593
vector: 0.0067032380029559135
vector: -0.002081893151625991
vector: 0.005021709017455578
vector: 0.051338110119104385
vector: 0.03776386380195618
vector: 0.03181559592485428
vector: -0.0481657013297081
vector: -0.03376784920692444
vector: -0.043651118874549866
vector: -0.025730062276124954
vector: 0.07998129725456238
vector: 0.0036814427003264427
vector: -0.03132753446698189
vector: 0.027407778427004814
vector: 0.01563326269388199
vector: -0.01106529962271452
vector: 0.0085258474573493
vector: -0.06058080121874809
vector: 0.04298003390431404
vector: -0.011927035637199879
vector: -0.027895841747522354
vector: 0.018866678699851036
vector: 0.04206491634249687
vector: 0.023228740319609642
vector: 0.01298704743385315
vector: -0.00411421712487936
vector: -0.029787084087729454
vector: -0.05069752782583237
vector: -0.04420018941164017
vector: 0.011103429831564426
vector: 0.019247978925704956
vector: -0.01574002578854561
vector: 0.059452153742313385
vector: -0.024433646351099014
vector: -0.041271813213825226
vector: 0.012110059149563313
vector: -5.707570744561963e-05
vector: -0.018088828772306442
vector: -0.008167426101863384
vector: -0.051338110119104385
vector: -0.03199861943721771
vector: -0.029344778507947922
vector: 0.022054338827729225
vector: 0.04929434508085251
vector: -0.030976738780736923
vector: -0.009700248949229717
vector: -0.029909100383520126
vector: -0.019034450873732567
vector: -0.013414101675152779
vector: 0.017036443576216698
vector: 0.027789078652858734
vector: 0.004705230705440044
vector: -0.023289747536182404
vector: -0.036116648465394974
vector: 0.05240574851632118
vector: -0.04990442469716072
vector: 0.01839386858046055
vector: -0.019308986142277718
vector: -0.03739781305193901
vector: -0.04667101055383682
vector: -0.02251189760863781
vector: 0.040448207408189774
vector: -0.06857282668352127
vector: 0.0005109407939016819
vector: -0.019507260993123055
vector: -0.008762253448367119
vector: -0.03880099579691887
vector: -0.031358037143945694
vector: 0.016441617161035538
vector: 0.03999064862728119
vector: -0.028826210647821426
vector: 0.014580877497792244
vector: -0.03581161051988602
vector: 0.0018454876262694597
vector: -0.06106886267662048
vector: -0.027621306478977203
vector: -0.020849434658885002
vector: 0.02121548168361187
vector: -0.0335543192923069
vector: -0.0012849778868258
vector: -0.029619313776493073
vector: -0.052253227680921555
vector: 0.014657136984169483
vector: 0.04020417481660843
vector: 0.01953776553273201
vector: -0.010905154049396515
vector: 0.02240513451397419
vector: 0.0024307817220687866
vector: -0.023243991658091545
vector: -0.021337497979402542
vector: 0.007317129522562027
vector: -0.013131940737366676
vector: 0.03745882213115692
vector: 0.038068901747465134
vector: 0.024387890473008156
vector: 0.044078174978494644
vector: -0.04447472468018532
vector: -0.01586204208433628
vector: -0.03751983121037483
vector: 0.02115447446703911
vector: 0.004945449065417051
vector: 0.015923049300909042
vector: -0.035171028226614
vector: 0.014611381106078625
vector: 0.015099444426596165
vector: 0.01452749501913786
vector: 0.021795056760311127
vector: 0.0136657590046525
vector: 0.006360068917274475
vector: -0.027240006253123283
vector: 0.010668748989701271
vector: 0.03642169013619423
vector: -0.05149063095450401
vector: -0.029741328209638596
vector: -0.006867196410894394
vector: 0.01845487579703331
vector: -0.021184977144002914
vector: 0.024006590247154236
vector: 0.008449587970972061
vector: 0.00022699210967402905
vector: 0.010051043704152107
vector: 0.012239701114594936
vector: -0.023152479901909828
vector: -0.008426710031926632
vector: -0.025257252156734467
vector: 0.023518528789281845
vector: 0.049812912940979004
vector: -0.05570017173886299
vector: 0.008129296824336052
vector: -0.010859398171305656
vector: -0.017875300720334053
vector: 0.05426648631691933
vector: 0.023137228563427925
vector: 0.019400497898459435
vector: -0.033157769590616226
vector: -0.0289482269436121
vector: -0.004945449065417051
vector: -0.027743322774767876
vector: -0.03718428686261177
vector: -0.03562858700752258
vector: 0.051978692412376404
vector: 0.0008274190477095544
vector: 0.03935006633400917
vector: 0.023030465468764305
vector: 0.03181559592485428
vector: -0.004903506487607956
vector: 0.024052346125245094
vector: 0.011736386455595493
vector: -0.02917700633406639
vector: -0.023198235780000687
vector: 0.0406007282435894
vector: 0.001571905449964106
vector: -0.007286625448614359
vector: 0.004083713050931692
vector: -0.013299711979925632
vector: 0.014169074594974518
vector: 0.015282467938959599
vector: 0.03327978402376175
vector: -0.020330866798758507
vector: 0.009669745340943336
vector: 0.016533128917217255
vector: 0.028490668162703514
vector: -0.012933664955198765
vector: 0.0085258474573493
vector: 0.028002604842185974
vector: 0.009097795933485031
vector: -0.01969028450548649
vector: -0.026828203350305557
vector: -0.023610040545463562
vector: -0.020529143512248993
vector: -0.006360068917274475
vector: -0.014062310568988323
vector: 0.032395169138908386
vector: 0.07229430973529816
vector: -0.015923049300909042
vector: -0.019553016871213913
vector: 0.021200230345129967
vector: 0.05762191861867905
vector: 0.005067464895546436
vector: -0.02679770067334175
vector: -0.024540409445762634
vector: 0.02115447446703911
vector: -0.043651118874549866
vector: 0.029192257672548294
vector: -0.03873998671770096
vector: -0.019827552139759064
vector: -0.03633017838001251
vector: -0.03489649295806885
vector: -0.03819091618061066
vector: -0.004217167850583792
vector: -0.026706188917160034
vector: 0.03559808433055878
vector: -0.0070387814193964005
vector: -0.009379957802593708
vector: -0.02127648890018463
vector: 0.007839509285986423
vector: -0.003302050055935979
vector: 0.0213832538574934
vector: -0.01130933128297329
vector: 0.026767196133732796
vector: 0.028322895988821983
vector: -0.0036070893984287977
vector: -0.034926995635032654
vector: 0.02457091398537159
vector: -0.02267966978251934
vector: -0.013421728275716305
vector: 0.07693090289831161
vector: 0.021078214049339294
vector: -0.03062594309449196
vector: -0.05454102158546448
vector: 0.007549722213298082
vector: 0.014184325933456421
vector: 0.010561984963715076
vector: -0.02246614173054695
vector: -0.0033687774557620287
vector: -0.008731748908758163
vector: -0.016914427280426025
vector: -0.024372637271881104
vector: -0.016853420063853264
vector: 0.021352749317884445
vector: -0.020712167024612427
vector: -0.030503926798701286
vector: -0.01824134774506092
vector: 0.030336156487464905
vector: 0.03257819265127182
vector: 0.00938758347183466
vector: -0.014702892862260342
vector: -0.05261927470564842
vector: 0.014756274409592152
vector: -0.005456389859318733
vector: -0.022267866879701614
vector: 0.02824663743376732
vector: 0.03263920173048973
vector: 0.012788771651685238
vector: 0.0015414016088470817
vector: 0.02240513451397419
vector: 0.012559992261230946
vector: -0.027102738618850708
vector: -0.006752806715667248
vector: 0.020468134433031082
vector: -0.01569426991045475
vector: 0.011027169413864613
vector: -0.026584172621369362
vector: -0.028612684458494186
vector: 0.01731097884476185
vector: 0.004621345084160566
vector: -0.011812645941972733
vector: -0.016914427280426025
vector: -0.01699068769812584
vector: -0.005414447281509638
vector: -0.04618294537067413
vector: 0.004270549863576889
vector: 0.006264743860810995
vector: 0.021581528708338737
vector: 0.018912434577941895
vector: -0.008274190127849579
vector: 0.011111055500805378
vector: 0.005036960821598768
vector: -0.00726374750956893
vector: -0.03819091618061066
vector: 0.017509253695607185
vector: -0.06213650107383728
vector: -0.03459145501255989
vector: 0.03529304265975952
vector: -0.08907146751880646
vector: 0.02457091398537159
vector: -0.0443832129240036
vector: -0.017631269991397858
vector: -0.004362061619758606
vector: 0.017677025869488716
vector: -0.02862793579697609
vector: -0.0014746742090210319
vector: 0.0019284201553091407
vector: -0.04041770473122597
vector: 0.0016014561988413334
vector: 0.0009384723962284625
vector: -0.043498601764440536
vector: 0.05191768333315849
vector: 0.009501973167061806
vector: -0.007557347882539034
vector: 0.022222111001610756
vector: -0.016151828691363335
vector: -0.022969456389546394
vector: 0.004907319322228432
vector: 0.0368182398378849
vector: 0.0010685906745493412
vector: 0.018378615379333496
vector: -0.053930941969156265
vector: 0.010935657657682896
vector: -0.03941107541322708
vector: -0.01417670026421547
vector: 0.03349331393837929
vector: -0.04712856933474541
vector: -0.02045288309454918
vector: 0.008091166615486145
vector: 0.008312320336699486
vector: 0.006718489807099104
vector: -0.0023659609723836184
vector: 0.023503275588154793
vector: 0.010394212789833546
vector: 0.054419007152318954
vector: 0.016212837770581245
vector: -0.004255298059433699
vector: -0.019675033167004585
vector: -0.042674995958805084
vector: -0.0016310068313032389
vector: 0.060916341841220856
vector: -0.013414101675152779
vector: -0.025257252156734467
vector: 0.008457213640213013
vector: 0.05097206309437752
vector: -0.0319376103579998
vector: 0.04563387483358383
vector: -0.002089519053697586
vector: 2.931236849690322e-05
vector: -0.032334163784980774
vector: -0.015999309718608856
vector: 0.0053610652685165405
vector: -0.013063306920230389
vector: 0.022984709590673447
vector: -0.0335543192923069
vector: -0.002072360599413514
vector: -0.018790418282151222
vector: 0.06838980317115784
vector: -0.048958804458379745
vector: -0.012285456992685795
vector: 0.019400497898459435
vector: -0.018149835988879204
vector: -0.027362022548913956
vector: -0.03294423967599869
vector: -0.05810998007655144
vector: 0.0029264704789966345
vector: 0.030869973823428154
vector: 0.0026614677626639605
vector: -0.00990615040063858
vector: 0.008693619631230831
vector: -0.019736040383577347
vector: -0.03294423967599869
vector: -0.026599423959851265
vector: -0.03660471364855766
vector: -0.003843494923785329
vector: 0.020361371338367462
vector: 0.01662464067339897
vector: 0.00324104237370193
vector: 0.010028165765106678
vector: -0.004903506487607956
vector: 0.014840160496532917
vector: -0.018195591866970062
vector: 0.022496646270155907
vector: 0.0031876603607088327
vector: 0.10054094344377518
vector: -0.016167081892490387
vector: 0.004255298059433699
vector: 0.02066641114652157
vector: -0.03648269549012184
vector: 0.025516534224152565
vector: 0.03294423967599869
vector: -0.06832879781723022
vector: -0.008434335701167583
vector: 0.037580836564302444
vector: -0.03349331393837929
vector: 0.01851588301360607
vector: 0.02278643287718296
vector: 0.02701122686266899
vector: 0.03684874251484871
vector: -0.028719447553157806
vector: -0.031632572412490845
vector: 0.02110871858894825
vector: 0.037367310374975204
vector: -0.029466792941093445
vector: -0.0346524603664875
vector: -0.010012914426624775
vector: -0.029909100383520126
vector: -0.04901980981230736
vector: -0.07162322103977203
vector: 0.008014907129108906
vector: -0.007694615516811609
vector: 0.01792105659842491
vector: 0.004270549863576889
vector: 0.013574247248470783
vector: 0.00938758347183466
vector: -0.030320903286337852
vector: 0.021078214049339294
vector: 0.0006405824678950012
vector: 0.03935006633400917
vector: -0.031907107681035995
vector: -0.011866027489304543
vector: 0.006760432850569487
vector: 0.021139221265912056
vector: 0.001777807017788291
vector: -0.005864379927515984
vector: -0.004552711267024279
vector: -0.01139321643859148
vector: 0.010867023840546608
vector: -0.0357200987637043
vector: 0.00023068595328368247
vector: -0.01949200965464115
vector: -0.004407817497849464
vector: 0.0034736348316073418
vector: 0.00722561776638031
vector: 0.03852646052837372
vector: 0.03068695031106472
vector: 0.03718428686261177
vector: -0.017570262774825096
vector: -0.03015313297510147
vector: -0.014352098107337952
vector: 0.0019493915606290102
vector: 0.029405785724520683
vector: 0.0330052487552166
vector: 0.023838819935917854
vector: -0.025501282885670662
vector: 0.03042766824364662
vector: 0.010577237233519554
vector: 0.03642169013619423
vector: -0.04160735756158829
vector: 0.06899988651275635
vector: -0.020696913823485374
vector: -0.020483387634158134
vector: 0.059238627552986145
vector: -0.009105422534048557
vector: 0.01569426991045475
vector: -0.048958804458379745
vector: 0.04252247512340546
vector: 0.002129555447027087
vector: -0.02582157403230667
vector: 0.0012716324999928474
vector: 0.0002445080317556858
vector: -0.026995975524187088
vector: 0.0019560642540454865
vector: -0.021627284586429596
vector: -0.052588772028684616
vector: 0.0020971449557691813
vector: -0.022877944633364677
vector: -0.03349331393837929
vector: -0.028978731483221054
vector: -0.0213832538574934
vector: -0.021825559437274933
vector: 0.006722303107380867
vector: 0.004995018243789673
vector: 0.0020952385384589434
vector: 0.0027758574578911066
vector: 0.017738033086061478
vector: -0.05313784256577492
vector: 0.011919409967958927
vector: -0.010684000328183174
vector: -0.03306625783443451
vector: 0.02261866256594658
vector: -0.061404407024383545
vector: 0.028170377016067505
vector: -0.04752511903643608
vector: -0.037306301295757294
vector: 0.01731097884476185
vector: -0.03370684012770653
vector: -0.04420018941164017
vector: 0.03074795939028263
vector: 0.02533351071178913
vector: -0.002106677507981658
vector: 0.007008277345448732
vector: -0.030595438554883003
vector: 0.02905499003827572
vector: 0.0011419907677918673
vector: -0.061831459403038025
vector: 0.0248912051320076
vector: 0.05402245372533798
vector: 0.03053443133831024
vector: 0.021413756534457207
vector: 0.008602107875049114
vector: -0.012727763503789902
vector: -0.03074795939028263
vector: 0.03773335739970207
vector: -0.009951906278729439
vector: 0.0784561038017273
vector: -0.05118558928370476
vector: 0.039045028388500214
vector: 0.0284144077450037
vector: 0.038556963205337524
vector: -0.00828181579709053
vector: 0.04017367213964462
vector: -0.03629967197775841
vector: 0.024204866960644722
vector: 0.006123663391917944
vector: -0.029299022629857063
vector: 0.08815634995698929
vector: 0.013002298772335052
vector: 0.03297474607825279
vector: -0.04950787499547005
vector: -0.07613780349493027
vector: 0.02142900973558426
vector: 0.01439785398542881
vector: 0.03928905725479126
vector: -0.07430756837129593
vector: -0.02993960492312908
vector: -0.033096760511398315
vector: 0.04813519865274429
vector: 0.020986702293157578
vector: -0.024479402229189873
vector: -0.022801686078310013
vector: -0.03459145501255989
vector: 0.026263881474733353
vector: -0.024555660784244537
vector: -0.01694493182003498
vector: -0.0032029123976826668
vector: -0.04380363970994949
vector: 0.005471642129123211
vector: 0.029512548819184303
vector: -0.022816937416791916
vector: 0.011499980464577675
vector: -0.022328874096274376
vector: -0.007713680621236563
vector: 0.0346219576895237
vector: 0.011278826743364334
vector: 0.004754799883812666
vector: 0.005517398007214069
vector: 0.0011629621731117368
vector: 0.014725770801305771
vector: -0.07558873295783997
vector: -0.005849128123372793
vector: -0.0752226859331131
vector: -0.03489649295806885
vector: -0.030168384313583374
vector: 0.040021151304244995
vector: 0.01947675831615925
vector: 0.02370155230164528
vector: -0.019522514194250107
vector: 0.02393033169209957
vector: -0.019949568435549736
vector: 0.001818796619772911
vector: 0.021032458171248436
vector: -0.01830235682427883
vector: -0.021718796342611313
vector: -0.022969456389546394
vector: 0.018820922821760178
vector: 0.0009418087429367006
vector: -0.012674381956458092
vector: -0.04447472468018532
vector: 0.016700901091098785
vector: 0.02993960492312908
vector: 0.011683003976941109
vector: 0.0039045026060193777
vector: 0.006569783203303814
vector: 0.05069752782583237
vector: -0.004750986583530903
vector: 0.012659129686653614
vector: -0.007381950505077839
vector: -0.007488714065402746
vector: 0.004022705368697643
vector: -0.04227844253182411
vector: 0.022176355123519897
vector: 0.017982065677642822
vector: -0.07510066777467728
vector: -0.03489649295806885
vector: -0.03773335739970207
vector: 0.012537114322185516
vector: -0.06686460971832275
vector: -0.0029264704789966345
vector: 0.02873469889163971
vector: 0.01420720387250185
vector: -0.061892468482255936
vector: -0.06430228054523468
vector: 0.023686299100518227
vector: -0.06533940881490707
vector: -0.04334608092904091
vector: -0.04398666322231293
vector: 0.025150487199425697
vector: 0.017387239262461662
vector: -0.013597125187516212
vector: -0.015709523111581802
vector: -0.0019941942300647497
vector: -0.01361237745732069
vector: -0.024235369637608528
vector: -0.027789078652858734
vector: 0.03556757792830467
vector: 0.01212531141936779
vector: 0.0067680589854717255
vector: -0.00424767192453146
vector: -0.03148005157709122
vector: -0.012079555541276932
vector: -0.011484728194773197
vector: -0.011568614281713963
vector: 0.03660471364855766
vector: -0.012903161346912384
vector: 0.023854071274399757
vector: -0.04359011352062225
vector: 0.0085258474573493
vector: -0.01845487579703331
vector: -0.019461505115032196
vector: 0.0046442230232059956
vector: -0.033859360963106155
vector: 0.04020417481660843
vector: 0.052466753870248795
vector: -0.021688291803002357
vector: -0.032883234322071075
vector: -0.003811084432527423
vector: -0.02890247106552124
vector: -0.02321348898112774
vector: 0.004754799883812666
vector: -0.039045028388500214
vector: -0.0005995928077027202
vector: 0.0018092641839757562
vector: 0.1076788604259491
vector: -0.022588158026337624
vector: -0.03009212389588356
vector: 0.034988004714250565
vector: 0.006653669290244579
vector: -0.034988004714250565
vector: -0.0497824102640152
vector: 0.009753630496561527
vector: -0.006596474442631006
vector: -0.013505613431334496
vector: -0.05325985699892044
vector: 0.0013393131084740162
vector: -0.03102249465882778
vector: 0.0319376103579998
vector: -0.01214818935841322
vector: 0.000670609762892127
vector: 0.028277140110731125
vector: -0.02365579642355442
vector: -0.0010552452877163887
vector: -0.02603510208427906
vector: 0.07717493921518326
vector: -0.017555009573698044
vector: 0.024647172540426254
vector: -0.007366698235273361
vector: 0.021566277369856834
vector: 0.05527311563491821
vector: -0.024692928418517113
vector: 0.006489710416644812
vector: -0.0665595680475235
vector: 0.07217229157686234
vector: 0.05164314806461334
vector: 0.038678981363773346
vector: -0.007385763339698315
vector: 0.04682352766394615
vector: -0.028399156406521797
vector: -0.009471469558775425
vector: 0.022176355123519897
vector: 0.024204866960644722
vector: 0.04038719832897186
vector: -0.0197512935847044
vector: 0.05933013930916786
vector: 0.03816041350364685
vector: -0.0017844797112047672
vector: -0.01601456105709076
vector: -0.09480620920658112
vector: -0.05152113363146782
vector: 0.006890074349939823
vector: -0.027453534305095673
vector: 0.0032791721168905497
vector: 0.016639892011880875
vector: -0.02397608757019043
vector: 0.0022344125900417566
vector: -0.0023488022852689028
vector: -0.04615244269371033
vector: -0.004907319322228432
vector: -0.027621306478977203
vector: 0.04740310460329056
vector: -0.024692928418517113
vector: 0.0025909272953867912
num_dimensions: 1024
]
Raw Output Example
status {
code: SUCCESS
description: "Ok"
req_id: "d03748f58ba35a376266f4935132521b"
}
outputs {
id: "a52203d9a2114428ac6ed23139e1afa9"
status {
code: SUCCESS
description: "Ok"
}
created_at {
seconds: 1702460385
nanos: 732703311
}
model {
id: "cohere-embed-english-v3_0"
name: "embed-english-v3_0"
created_at {
seconds: 1699267051
nanos: 239483000
}
app_id: "embed"
model_version {
id: "e2dd848faf454fbda85c26cf89c4926e"
created_at {
seconds: 1699269295
nanos: 601056000
}
status {
code: MODEL_TRAINED
description: "Model is trained and ready"
}
completed_at {
seconds: 1699269521
nanos: 395913000
}
visibility {
gettable: PUBLIC
}
app_id: "embed"
user_id: "cohere"
metadata {
}
}
user_id: "cohere"
model_type_id: "text-embedder"
visibility {
gettable: PUBLIC
}
modified_at {
seconds: 1701248637
nanos: 454591000
}
workflow_recommended {
}
}
input {
id: "3ce817f59bbe422d89d68b16dcd0b98b"
data {
text {
raw: "Give me an exotic yet tasty recipe for some noodle dish"
url: "https://samples.clarifai.com/placeholder.gif"
}
}
}
data {
embeddings {
vector: 0.025470778346061707
vector: 0.027972102165222168
vector: -0.01801256835460663
vector: -0.025394519791007042
vector: 0.007034968119114637
vector: -0.0002650028618518263
vector: -0.0037653285544365644
vector: -0.0023831194266676903
vector: -0.03773335739970207
vector: 0.05649327486753464
vector: 0.01828710362315178
vector: 0.00324104237370193
vector: -0.015084192156791687
vector: -0.0007111228187568486
vector: -0.009479095228016376
vector: -0.016197584569454193
vector: 0.01801256835460663
vector: 0.017738033086061478
vector: 0.027041731402277946
vector: 0.005357252433896065
vector: 0.0050331479869782925
vector: 0.028963478282094002
vector: -0.012285456992685795
vector: -0.035171028226614
vector: 0.041058287024497986
vector: -0.030442919582128525
vector: -0.0278653372079134
vector: -0.00623805308714509
vector: 0.011621995829045773
vector: 0.001777807017788291
vector: -0.005467828828841448
vector: 0.01667039655148983
vector: 0.05164314806461334
vector: 0.018698906525969505
vector: -0.07211128622293472
vector: -0.030061621218919754
vector: 0.0001396507868776098
vector: -0.01699068769812584
vector: -0.06198398023843765
vector: 0.05929963290691376
vector: 0.037702854722738266
vector: -0.020605402067303658
vector: -0.06363119184970856
vector: -0.004384939558804035
vector: -0.051002565771341324
vector: -0.021947575733065605
vector: 0.02457091398537159
vector: 0.006009273696690798
vector: 0.00549452006816864
vector: 0.008258937858045101
vector: 0.018912434577941895
vector: -0.005502145737409592
vector: 0.01715845987200737
vector: 0.009242690168321133
vector: -0.020818930119276047
vector: -0.009837516583502293
vector: 0.01894293911755085
vector: 0.005456389859318733
vector: 0.038556963205337524
vector: -0.041485339403152466
vector: -0.0633261501789093
vector: -0.012338838540017605
vector: 0.05271078646183014
vector: -0.00013786344788968563
vector: 0.010684000328183174
vector: 0.0098756467923522
vector: 0.001827375846914947
vector: 0.014962175861001015
vector: -0.006932017393410206
vector: 0.01074500847607851
vector: 0.0010018633911386132
vector: -0.01212531141936779
vector: 0.018043072894215584
vector: -0.09224387258291245
vector: -0.013825904577970505
vector: 0.057499904185533524
vector: 0.023579536005854607
vector: -0.02873469889163971
vector: -0.011759264394640923
vector: -0.03297474607825279
vector: -0.0017129861516878009
vector: 0.020147843286395073
vector: 0.020803678780794144
vector: -0.0855330154299736
vector: 0.013986051082611084
vector: -0.09023061394691467
vector: -0.004651848692446947
vector: 0.0305801872164011
vector: 0.007992029190063477
vector: 0.049172330647706985
vector: 0.0025413583498448133
vector: -0.022039087489247322
vector: -0.0013612377224490047
vector: 0.052253227680921555
vector: 0.03312726318836212
vector: -0.008724123239517212
vector: -0.01790580525994301
vector: -0.08461789786815643
vector: 0.04252247512340546
vector: 0.041271813213825226
vector: 0.07009802758693695
vector: -0.08187253773212433
vector: 0.11414569616317749
vector: -0.01561801042407751
vector: -0.0036909752525389194
vector: 0.03285272791981697
vector: 0.03279172256588936
vector: 0.015030810609459877
vector: -0.007652672939002514
vector: -0.015251963399350643
vector: -0.00938758347183466
vector: 0.015938302502036095
vector: 0.0018321421230211854
vector: -0.003012262750416994
vector: -0.028658440336585045
vector: 0.00906729232519865
vector: -0.017082199454307556
vector: -0.019308986142277718
vector: 0.003138091415166855
vector: -0.007309503387659788
vector: 0.02739252708852291
vector: 0.023366007953882217
vector: 0.005769055336713791
vector: 0.016090821474790573
vector: -0.042674995958805084
vector: -0.023823566734790802
vector: -0.030778462067246437
vector: -0.022908449172973633
vector: 0.0362691693007946
vector: -0.012399846687912941
vector: -0.06302111595869064
vector: 0.007019716314971447
vector: 0.08419083803892136
vector: 0.02656892128288746
vector: 0.02446414902806282
vector: -0.016853420063853264
vector: 0.03079371526837349
vector: -0.010554359294474125
vector: -0.0035651465877890587
vector: -0.0048844413831830025
vector: 0.029954856261610985
vector: -0.028871966525912285
vector: 0.005776681005954742
vector: 0.023625291883945465
vector: -0.02289319783449173
vector: 0.02571481093764305
vector: 0.014779152348637581
vector: -0.011530484072864056
vector: -0.01561801042407751
vector: -0.004785303492099047
vector: -0.03663521632552147
vector: -0.023228740319609642
vector: 0.018927687779068947
vector: -0.01635010540485382
vector: -0.031968116760253906
vector: 0.007694615516811609
vector: -0.03880099579691887
vector: 0.019827552139759064
vector: -0.02527250349521637
vector: 0.011812645941972733
vector: -0.06326514482498169
vector: -0.019308986142277718
vector: -0.00752303097397089
vector: -0.012155815027654171
vector: 0.0037081337068229914
vector: 0.005418260116130114
vector: 0.057011839002370834
vector: 0.03416439890861511
vector: 0.013025176711380482
vector: 0.006039777770638466
vector: 0.040295686572790146
vector: -0.02879570797085762
vector: -0.052802298218011856
vector: -0.02136800065636635
vector: 0.0009060619631782174
vector: -0.003061831695958972
vector: 0.026507912203669548
vector: 0.005151350516825914
vector: -0.020757922902703285
vector: 0.047494616359472275
vector: 0.012110059149563313
vector: -0.0232744961977005
vector: 0.0005414446932263672
vector: -0.002543264999985695
vector: -0.016380608081817627
vector: 0.009097795933485031
vector: -0.01482490822672844
vector: 0.04380363970994949
vector: 0.005200919695198536
vector: 0.0028940599877387285
vector: -0.0064058247953653336
vector: 0.0072713736444711685
vector: -0.05149063095450401
vector: 0.03614715486764908
vector: 0.03712327778339386
vector: -0.014977428130805492
vector: -0.01872941106557846
vector: 0.001053338753990829
vector: 0.0007606917060911655
vector: -0.059238627552986145
vector: -0.005036960821598768
vector: -0.01607557013630867
vector: 0.010348456911742687
vector: 0.011629622429609299
vector: 0.007809005212038755
vector: -0.014115692116320133
vector: 0.002140994416549802
vector: 0.007141732145100832
vector: 0.05255826562643051
vector: 0.01502318400889635
vector: -0.022542402148246765
vector: 0.015724774450063705
vector: 0.0014441702514886856
vector: -0.060001224279403687
vector: -0.03718428686261177
vector: 0.04481026902794838
vector: -0.040936268866062164
vector: 0.031098753213882446
vector: 0.021825559437274933
vector: -0.021245986223220825
vector: 0.023823566734790802
vector: 0.01682291552424431
vector: 0.028963478282094002
vector: -0.015434986911714077
vector: 0.057072848081588745
vector: 0.0012211103457957506
vector: -0.012514236383140087
vector: -0.02132224477827549
vector: 0.013436979614198208
vector: 0.050087448209524155
vector: -0.11438972502946854
vector: -0.0063753207214176655
vector: -0.03620816022157669
vector: -0.03599463403224945
vector: -0.054144471883773804
vector: 0.004487890284508467
vector: -0.037641845643520355
vector: 0.006680360063910484
vector: -0.004091339185833931
vector: 0.012895535677671432
vector: 0.016045065596699715
vector: 0.01856163889169693
vector: -0.04160735756158829
vector: -0.010973787866532803
vector: 0.0026481221430003643
vector: -0.049385856837034225
vector: -0.009509599767625332
vector: 0.017082199454307556
vector: -0.030381912365555763
vector: -0.06680360436439514
vector: 0.026157118380069733
vector: -0.014733396470546722
vector: 0.04807418957352638
vector: -0.04676252231001854
vector: 0.016594136133790016
vector: 0.043925654143095016
vector: 0.028856715187430382
vector: 0.028826210647821426
vector: -0.018744662404060364
vector: 0.049233339726924896
vector: -0.036238666623830795
vector: 0.13226503133773804
vector: 0.04627445712685585
vector: 0.055181603878736496
vector: -0.030000612139701843
vector: -0.013208200223743916
vector: 0.005608909763395786
vector: 0.004198103211820126
vector: -0.023243991658091545
vector: -0.005879632197320461
vector: 0.025897834450006485
vector: 0.062380529940128326
vector: -4.426644227351062e-05
vector: -0.04334608092904091
vector: -0.03126652538776398
vector: -0.044901780784130096
vector: -0.02603510208427906
vector: 0.059116609394550323
vector: -0.030763210728764534
vector: -0.047220081090927124
vector: -0.0023507089354097843
vector: 0.06906089186668396
vector: 0.04133282229304314
vector: -0.01889718323945999
vector: -0.03151055797934532
vector: -0.026858707889914513
vector: 0.005913949105888605
vector: -0.01618233323097229
vector: -0.018058324232697487
vector: 0.018317608162760735
vector: 0.028078865259885788
vector: 0.039472080767154694
vector: 0.02624863013625145
vector: -0.013513240031898022
vector: 0.016685647889971733
vector: 0.006081720348447561
vector: 0.0822385847568512
vector: 0.03928905725479126
vector: -0.0267824474722147
vector: -0.0018464408349245787
vector: 0.010432342998683453
vector: -0.0047624255530536175
vector: 0.01790580525994301
vector: -0.05124659836292267
vector: 0.004022705368697643
vector: 0.03437792509794235
vector: -0.010165433399379253
vector: 0.023305000737309456
vector: -0.0026385898236185312
vector: -0.003769141621887684
vector: -0.017997317016124725
vector: -0.0025947403628379107
vector: 0.034286413341760635
vector: 0.05670680105686188
vector: -0.02348802424967289
vector: -0.0087927570566535
vector: -0.0006062655593268573
vector: 0.03306625783443451
vector: -0.012392220087349415
vector: -0.06079432740807533
vector: 0.033035751432180405
vector: 0.10035791993141174
vector: 0.016761908307671547
vector: 0.014489365741610527
vector: 0.052954819053411484
vector: -0.05207020416855812
vector: -0.010455220937728882
vector: -0.008922399021685123
vector: 0.015663767233490944
vector: 0.015427361242473125
vector: 0.00767173757776618
vector: 0.03629967197775841
vector: -0.024220118299126625
vector: 0.04850124567747116
vector: 0.0027262885123491287
vector: -0.014054684899747372
vector: 0.0007297111442312598
vector: -0.009913776069879532
vector: -0.025287754833698273
vector: -0.006924391258507967
vector: -0.004388752393424511
vector: -0.013536117970943451
vector: 0.01981230080127716
vector: -0.0557306744158268
vector: -0.02007158473134041
vector: -0.03036665916442871
vector: -0.026431653648614883
vector: -0.012171067297458649
vector: -0.01309381052851677
vector: -0.016151828691363335
vector: 0.023945583030581474
vector: 0.01531297154724598
vector: 0.013742019422352314
vector: 0.030183635652065277
vector: 0.022115347906947136
vector: -0.05640176311135292
vector: -0.018927687779068947
vector: 0.06350917369127274
vector: -0.027514541521668434
vector: -0.010577237233519554
vector: -0.011797393672168255
vector: -0.012819275259971619
vector: -0.03202912211418152
vector: 0.06375321000814438
vector: 0.019614025950431824
vector: -0.018363364040851593
vector: 0.0067032380029559135
vector: -0.002081893151625991
vector: 0.005021709017455578
vector: 0.051338110119104385
vector: 0.03776386380195618
vector: 0.03181559592485428
vector: -0.0481657013297081
vector: -0.03376784920692444
vector: -0.043651118874549866
vector: -0.025730062276124954
vector: 0.07998129725456238
vector: 0.0036814427003264427
vector: -0.03132753446698189
vector: 0.027407778427004814
vector: 0.01563326269388199
vector: -0.01106529962271452
vector: 0.0085258474573493
vector: -0.06058080121874809
vector: 0.04298003390431404
vector: -0.011927035637199879
vector: -0.027895841747522354
vector: 0.018866678699851036
vector: 0.04206491634249687
vector: 0.023228740319609642
vector: 0.01298704743385315
vector: -0.00411421712487936
vector: -0.029787084087729454
vector: -0.05069752782583237
vector: -0.04420018941164017
vector: 0.011103429831564426
vector: 0.019247978925704956
vector: -0.01574002578854561
vector: 0.059452153742313385
vector: -0.024433646351099014
vector: -0.041271813213825226
vector: 0.012110059149563313
vector: -5.707570744561963e-05
vector: -0.018088828772306442
vector: -0.008167426101863384
vector: -0.051338110119104385
vector: -0.03199861943721771
vector: -0.029344778507947922
vector: 0.022054338827729225
vector: 0.04929434508085251
vector: -0.030976738780736923
vector: -0.009700248949229717
vector: -0.029909100383520126
vector: -0.019034450873732567
vector: -0.013414101675152779
vector: 0.017036443576216698
vector: 0.027789078652858734
vector: 0.004705230705440044
vector: -0.023289747536182404
vector: -0.036116648465394974
vector: 0.05240574851632118
vector: -0.04990442469716072
vector: 0.01839386858046055
vector: -0.019308986142277718
vector: -0.03739781305193901
vector: -0.04667101055383682
vector: -0.02251189760863781
vector: 0.040448207408189774
vector: -0.06857282668352127
vector: 0.0005109407939016819
vector: -0.019507260993123055
vector: -0.008762253448367119
vector: -0.03880099579691887
vector: -0.031358037143945694
vector: 0.016441617161035538
vector: 0.03999064862728119
vector: -0.028826210647821426
vector: 0.014580877497792244
vector: -0.03581161051988602
vector: 0.0018454876262694597
vector: -0.06106886267662048
vector: -0.027621306478977203
vector: -0.020849434658885002
vector: 0.02121548168361187
vector: -0.0335543192923069
vector: -0.0012849778868258
vector: -0.029619313776493073
vector: -0.052253227680921555
vector: 0.014657136984169483
vector: 0.04020417481660843
vector: 0.01953776553273201
vector: -0.010905154049396515
vector: 0.02240513451397419
vector: 0.0024307817220687866
vector: -0.023243991658091545
vector: -0.021337497979402542
vector: 0.007317129522562027
vector: -0.013131940737366676
vector: 0.03745882213115692
vector: 0.038068901747465134
vector: 0.024387890473008156
vector: 0.044078174978494644
vector: -0.04447472468018532
vector: -0.01586204208433628
vector: -0.03751983121037483
vector: 0.02115447446703911
vector: 0.004945449065417051
vector: 0.015923049300909042
vector: -0.035171028226614
vector: 0.014611381106078625
vector: 0.015099444426596165
vector: 0.01452749501913786
vector: 0.021795056760311127
vector: 0.0136657590046525
vector: 0.006360068917274475
vector: -0.027240006253123283
vector: 0.010668748989701271
vector: 0.03642169013619423
vector: -0.05149063095450401
vector: -0.029741328209638596
vector: -0.006867196410894394
vector: 0.01845487579703331
vector: -0.021184977144002914
vector: 0.024006590247154236
vector: 0.008449587970972061
vector: 0.00022699210967402905
vector: 0.010051043704152107
vector: 0.012239701114594936
vector: -0.023152479901909828
vector: -0.008426710031926632
vector: -0.025257252156734467
vector: 0.023518528789281845
vector: 0.049812912940979004
vector: -0.05570017173886299
vector: 0.008129296824336052
vector: -0.010859398171305656
vector: -0.017875300720334053
vector: 0.05426648631691933
vector: 0.023137228563427925
vector: 0.019400497898459435
vector: -0.033157769590616226
vector: -0.0289482269436121
vector: -0.004945449065417051
vector: -0.027743322774767876
vector: -0.03718428686261177
vector: -0.03562858700752258
vector: 0.051978692412376404
vector: 0.0008274190477095544
vector: 0.03935006633400917
vector: 0.023030465468764305
vector: 0.03181559592485428
vector: -0.004903506487607956
vector: 0.024052346125245094
vector: 0.011736386455595493
vector: -0.02917700633406639
vector: -0.023198235780000687
vector: 0.0406007282435894
vector: 0.001571905449964106
vector: -0.007286625448614359
vector: 0.004083713050931692
vector: -0.013299711979925632
vector: 0.014169074594974518
vector: 0.015282467938959599
vector: 0.03327978402376175
vector: -0.020330866798758507
vector: 0.009669745340943336
vector: 0.016533128917217255
vector: 0.028490668162703514
vector: -0.012933664955198765
vector: 0.0085258474573493
vector: 0.028002604842185974
vector: 0.009097795933485031
vector: -0.01969028450548649
vector: -0.026828203350305557
vector: -0.023610040545463562
vector: -0.020529143512248993
vector: -0.006360068917274475
vector: -0.014062310568988323
vector: 0.032395169138908386
vector: 0.07229430973529816
vector: -0.015923049300909042
vector: -0.019553016871213913
vector: 0.021200230345129967
vector: 0.05762191861867905
vector: 0.005067464895546436
vector: -0.02679770067334175
vector: -0.024540409445762634
vector: 0.02115447446703911
vector: -0.043651118874549866
vector: 0.029192257672548294
vector: -0.03873998671770096
vector: -0.019827552139759064
vector: -0.03633017838001251
vector: -0.03489649295806885
vector: -0.03819091618061066
vector: -0.004217167850583792
vector: -0.026706188917160034
vector: 0.03559808433055878
vector: -0.0070387814193964005
vector: -0.009379957802593708
vector: -0.02127648890018463
vector: 0.007839509285986423
vector: -0.003302050055935979
vector: 0.0213832538574934
vector: -0.01130933128297329
vector: 0.026767196133732796
vector: 0.028322895988821983
vector: -0.0036070893984287977
vector: -0.034926995635032654
vector: 0.02457091398537159
vector: -0.02267966978251934
vector: -0.013421728275716305
vector: 0.07693090289831161
vector: 0.021078214049339294
vector: -0.03062594309449196
vector: -0.05454102158546448
vector: 0.007549722213298082
vector: 0.014184325933456421
vector: 0.010561984963715076
vector: -0.02246614173054695
vector: -0.0033687774557620287
vector: -0.008731748908758163
vector: -0.016914427280426025
vector: -0.024372637271881104
vector: -0.016853420063853264
vector: 0.021352749317884445
vector: -0.020712167024612427
vector: -0.030503926798701286
vector: -0.01824134774506092
vector: 0.030336156487464905
vector: 0.03257819265127182
vector: 0.00938758347183466
vector: -0.014702892862260342
vector: -0.05261927470564842
vector: 0.014756274409592152
vector: -0.005456389859318733
vector: -0.022267866879701614
vector: 0.02824663743376732
vector: 0.03263920173048973
vector: 0.012788771651685238
vector: 0.0015414016088470817
vector: 0.02240513451397419
vector: 0.012559992261230946
vector: -0.027102738618850708
vector: -0.006752806715667248
vector: 0.020468134433031082
vector: -0.01569426991045475
vector: 0.011027169413864613
vector: -0.026584172621369362
vector: -0.028612684458494186
vector: 0.01731097884476185
vector: 0.004621345084160566
vector: -0.011812645941972733
vector: -0.016914427280426025
vector: -0.01699068769812584
vector: -0.005414447281509638
vector: -0.04618294537067413
vector: 0.004270549863576889
vector: 0.006264743860810995
vector: 0.021581528708338737
vector: 0.018912434577941895
vector: -0.008274190127849579
vector: 0.011111055500805378
vector: 0.005036960821598768
vector: -0.00726374750956893
vector: -0.03819091618061066
vector: 0.017509253695607185
vector: -0.06213650107383728
vector: -0.03459145501255989
vector: 0.03529304265975952
vector: -0.08907146751880646
vector: 0.02457091398537159
vector: -0.0443832129240036
vector: -0.017631269991397858
vector: -0.004362061619758606
vector: 0.017677025869488716
vector: -0.02862793579697609
vector: -0.0014746742090210319
vector: 0.0019284201553091407
vector: -0.04041770473122597
vector: 0.0016014561988413334
vector: 0.0009384723962284625
vector: -0.043498601764440536
vector: 0.05191768333315849
vector: 0.009501973167061806
vector: -0.007557347882539034
vector: 0.022222111001610756
vector: -0.016151828691363335
vector: -0.022969456389546394
vector: 0.004907319322228432
vector: 0.0368182398378849
vector: 0.0010685906745493412
vector: 0.018378615379333496
vector: -0.053930941969156265
vector: 0.010935657657682896
vector: -0.03941107541322708
vector: -0.01417670026421547
vector: 0.03349331393837929
vector: -0.04712856933474541
vector: -0.02045288309454918
vector: 0.008091166615486145
vector: 0.008312320336699486
vector: 0.006718489807099104
vector: -0.0023659609723836184
vector: 0.023503275588154793
vector: 0.010394212789833546
vector: 0.054419007152318954
vector: 0.016212837770581245
vector: -0.004255298059433699
vector: -0.019675033167004585
vector: -0.042674995958805084
vector: -0.0016310068313032389
vector: 0.060916341841220856
vector: -0.013414101675152779
vector: -0.025257252156734467
vector: 0.008457213640213013
vector: 0.05097206309437752
vector: -0.0319376103579998
vector: 0.04563387483358383
vector: -0.002089519053697586
vector: 2.931236849690322e-05
vector: -0.032334163784980774
vector: -0.015999309718608856
vector: 0.0053610652685165405
vector: -0.013063306920230389
vector: 0.022984709590673447
vector: -0.0335543192923069
vector: -0.002072360599413514
vector: -0.018790418282151222
vector: 0.06838980317115784
vector: -0.048958804458379745
vector: -0.012285456992685795
vector: 0.019400497898459435
vector: -0.018149835988879204
vector: -0.027362022548913956
vector: -0.03294423967599869
vector: -0.05810998007655144
vector: 0.0029264704789966345
vector: 0.030869973823428154
vector: 0.0026614677626639605
vector: -0.00990615040063858
vector: 0.008693619631230831
vector: -0.019736040383577347
vector: -0.03294423967599869
vector: -0.026599423959851265
vector: -0.03660471364855766
vector: -0.003843494923785329
vector: 0.020361371338367462
vector: 0.01662464067339897
vector: 0.00324104237370193
vector: 0.010028165765106678
vector: -0.004903506487607956
vector: 0.014840160496532917
vector: -0.018195591866970062
vector: 0.022496646270155907
vector: 0.0031876603607088327
vector: 0.10054094344377518
vector: -0.016167081892490387
vector: 0.004255298059433699
vector: 0.02066641114652157
vector: -0.03648269549012184
vector: 0.025516534224152565
vector: 0.03294423967599869
vector: -0.06832879781723022
vector: -0.008434335701167583
vector: 0.037580836564302444
vector: -0.03349331393837929
vector: 0.01851588301360607
vector: 0.02278643287718296
vector: 0.02701122686266899
vector: 0.03684874251484871
vector: -0.028719447553157806
vector: -0.031632572412490845
vector: 0.02110871858894825
vector: 0.037367310374975204
vector: -0.029466792941093445
vector: -0.0346524603664875
vector: -0.010012914426624775
vector: -0.029909100383520126
vector: -0.04901980981230736
vector: -0.07162322103977203
vector: 0.008014907129108906
vector: -0.007694615516811609
vector: 0.01792105659842491
vector: 0.004270549863576889
vector: 0.013574247248470783
vector: 0.00938758347183466
vector: -0.030320903286337852
vector: 0.021078214049339294
vector: 0.0006405824678950012
vector: 0.03935006633400917
vector: -0.031907107681035995
vector: -0.011866027489304543
vector: 0.006760432850569487
vector: 0.021139221265912056
vector: 0.001777807017788291
vector: -0.005864379927515984
vector: -0.004552711267024279
vector: -0.01139321643859148
vector: 0.010867023840546608
vector: -0.0357200987637043
vector: 0.00023068595328368247
vector: -0.01949200965464115
vector: -0.004407817497849464
vector: 0.0034736348316073418
vector: 0.00722561776638031
vector: 0.03852646052837372
vector: 0.03068695031106472
vector: 0.03718428686261177
vector: -0.017570262774825096
vector: -0.03015313297510147
vector: -0.014352098107337952
vector: 0.0019493915606290102
vector: 0.029405785724520683
vector: 0.0330052487552166
vector: 0.023838819935917854
vector: -0.025501282885670662
vector: 0.03042766824364662
vector: 0.010577237233519554
vector: 0.03642169013619423
vector: -0.04160735756158829
vector: 0.06899988651275635
vector: -0.020696913823485374
vector: -0.020483387634158134
vector: 0.059238627552986145
vector: -0.009105422534048557
vector: 0.01569426991045475
vector: -0.048958804458379745
vector: 0.04252247512340546
vector: 0.002129555447027087
vector: -0.02582157403230667
vector: 0.0012716324999928474
vector: 0.0002445080317556858
vector: -0.026995975524187088
vector: 0.0019560642540454865
vector: -0.021627284586429596
vector: -0.052588772028684616
vector: 0.0020971449557691813
vector: -0.022877944633364677
vector: -0.03349331393837929
vector: -0.028978731483221054
vector: -0.0213832538574934
vector: -0.021825559437274933
vector: 0.006722303107380867
vector: 0.004995018243789673
vector: 0.0020952385384589434
vector: 0.0027758574578911066
vector: 0.017738033086061478
vector: -0.05313784256577492
vector: 0.011919409967958927
vector: -0.010684000328183174
vector: -0.03306625783443451
vector: 0.02261866256594658
vector: -0.061404407024383545
vector: 0.028170377016067505
vector: -0.04752511903643608
vector: -0.037306301295757294
vector: 0.01731097884476185
vector: -0.03370684012770653
vector: -0.04420018941164017
vector: 0.03074795939028263
vector: 0.02533351071178913
vector: -0.002106677507981658
vector: 0.007008277345448732
vector: -0.030595438554883003
vector: 0.02905499003827572
vector: 0.0011419907677918673
vector: -0.061831459403038025
vector: 0.0248912051320076
vector: 0.05402245372533798
vector: 0.03053443133831024
vector: 0.021413756534457207
vector: 0.008602107875049114
vector: -0.012727763503789902
vector: -0.03074795939028263
vector: 0.03773335739970207
vector: -0.009951906278729439
vector: 0.0784561038017273
vector: -0.05118558928370476
vector: 0.039045028388500214
vector: 0.0284144077450037
vector: 0.038556963205337524
vector: -0.00828181579709053
vector: 0.04017367213964462
vector: -0.03629967197775841
vector: 0.024204866960644722
vector: 0.006123663391917944
vector: -0.029299022629857063
vector: 0.08815634995698929
vector: 0.013002298772335052
vector: 0.03297474607825279
vector: -0.04950787499547005
vector: -0.07613780349493027
vector: 0.02142900973558426
vector: 0.01439785398542881
vector: 0.03928905725479126
vector: -0.07430756837129593
vector: -0.02993960492312908
vector: -0.033096760511398315
vector: 0.04813519865274429
vector: 0.020986702293157578
vector: -0.024479402229189873
vector: -0.022801686078310013
vector: -0.03459145501255989
vector: 0.026263881474733353
vector: -0.024555660784244537
vector: -0.01694493182003498
vector: -0.0032029123976826668
vector: -0.04380363970994949
vector: 0.005471642129123211
vector: 0.029512548819184303
vector: -0.022816937416791916
vector: 0.011499980464577675
vector: -0.022328874096274376
vector: -0.007713680621236563
vector: 0.0346219576895237
vector: 0.011278826743364334
vector: 0.004754799883812666
vector: 0.005517398007214069
vector: 0.0011629621731117368
vector: 0.014725770801305771
vector: -0.07558873295783997
vector: -0.005849128123372793
vector: -0.0752226859331131
vector: -0.03489649295806885
vector: -0.030168384313583374
vector: 0.040021151304244995
vector: 0.01947675831615925
vector: 0.02370155230164528
vector: -0.019522514194250107
vector: 0.02393033169209957
vector: -0.019949568435549736
vector: 0.001818796619772911
vector: 0.021032458171248436
vector: -0.01830235682427883
vector: -0.021718796342611313
vector: -0.022969456389546394
vector: 0.018820922821760178
vector: 0.0009418087429367006
vector: -0.012674381956458092
vector: -0.04447472468018532
vector: 0.016700901091098785
vector: 0.02993960492312908
vector: 0.011683003976941109
vector: 0.0039045026060193777
vector: 0.006569783203303814
vector: 0.05069752782583237
vector: -0.004750986583530903
vector: 0.012659129686653614
vector: -0.007381950505077839
vector: -0.007488714065402746
vector: 0.004022705368697643
vector: -0.04227844253182411
vector: 0.022176355123519897
vector: 0.017982065677642822
vector: -0.07510066777467728
vector: -0.03489649295806885
vector: -0.03773335739970207
vector: 0.012537114322185516
vector: -0.06686460971832275
vector: -0.0029264704789966345
vector: 0.02873469889163971
vector: 0.01420720387250185
vector: -0.061892468482255936
vector: -0.06430228054523468
vector: 0.023686299100518227
vector: -0.06533940881490707
vector: -0.04334608092904091
vector: -0.04398666322231293
vector: 0.025150487199425697
vector: 0.017387239262461662
vector: -0.013597125187516212
vector: -0.015709523111581802
vector: -0.0019941942300647497
vector: -0.01361237745732069
vector: -0.024235369637608528
vector: -0.027789078652858734
vector: 0.03556757792830467
vector: 0.01212531141936779
vector: 0.0067680589854717255
vector: -0.00424767192453146
vector: -0.03148005157709122
vector: -0.012079555541276932
vector: -0.011484728194773197
vector: -0.011568614281713963
vector: 0.03660471364855766
vector: -0.012903161346912384
vector: 0.023854071274399757
vector: -0.04359011352062225
vector: 0.0085258474573493
vector: -0.01845487579703331
vector: -0.019461505115032196
vector: 0.0046442230232059956
vector: -0.033859360963106155
vector: 0.04020417481660843
vector: 0.052466753870248795
vector: -0.021688291803002357
vector: -0.032883234322071075
vector: -0.003811084432527423
vector: -0.02890247106552124
vector: -0.02321348898112774
vector: 0.004754799883812666
vector: -0.039045028388500214
vector: -0.0005995928077027202
vector: 0.0018092641839757562
vector: 0.1076788604259491
vector: -0.022588158026337624
vector: -0.03009212389588356
vector: 0.034988004714250565
vector: 0.006653669290244579
vector: -0.034988004714250565
vector: -0.0497824102640152
vector: 0.009753630496561527
vector: -0.006596474442631006
vector: -0.013505613431334496
vector: -0.05325985699892044
vector: 0.0013393131084740162
vector: -0.03102249465882778
vector: 0.0319376103579998
vector: -0.01214818935841322
vector: 0.000670609762892127
vector: 0.028277140110731125
vector: -0.02365579642355442
vector: -0.0010552452877163887
vector: -0.02603510208427906
vector: 0.07717493921518326
vector: -0.017555009573698044
vector: 0.024647172540426254
vector: -0.007366698235273361
vector: 0.021566277369856834
vector: 0.05527311563491821
vector: -0.024692928418517113
vector: 0.006489710416644812
vector: -0.0665595680475235
vector: 0.07217229157686234
vector: 0.05164314806461334
vector: 0.038678981363773346
vector: -0.007385763339698315
vector: 0.04682352766394615
vector: -0.028399156406521797
vector: -0.009471469558775425
vector: 0.022176355123519897
vector: 0.024204866960644722
vector: 0.04038719832897186
vector: -0.0197512935847044
vector: 0.05933013930916786
vector: 0.03816041350364685
vector: -0.0017844797112047672
vector: -0.01601456105709076
vector: -0.09480620920658112
vector: -0.05152113363146782
vector: 0.006890074349939823
vector: -0.027453534305095673
vector: 0.0032791721168905497
vector: 0.016639892011880875
vector: -0.02397608757019043
vector: 0.0022344125900417566
vector: -0.0023488022852689028
vector: -0.04615244269371033
vector: -0.004907319322228432
vector: -0.027621306478977203
vector: 0.04740310460329056
vector: -0.024692928418517113
vector: 0.0025909272953867912
num_dimensions: 1024
}
}
}