
SDK Guide Advanced Model Operations Model Upload

Model Upload
Learn how to perform model upload using Clarifai SDKs

Users can now upload their custom-built models into production using Clarifai SDKs. The Clarifai SDKs
offers features like a command-line interface, easy implementation, and testing in Python to make the
process of deploying the model easier.

Additionally, for serving configurations, the serving_backend section contains custom settings, including
options for NVIDIA Triton. With Triton, users can leverage high-performance GPU computation for
inference tasks. NVIDIA Triton Inference Server stands out as a powerful and versatile platform. It
streamlines the deployment and execution of machine learning models for inference tasks, offering a
professional solution for developers and data scientists seeking to bridge the gap between model
development and real-world applications. Its emphasis on framework flexibility, performance
optimization, scalability, and ease of integration makes it a compelling choice for maximizing the impact of
machine learning models across various industries.

Prerequisites
Setting up the Clarifai SDKs along with PAT. Refer to the installation and configuration with the PAT
token here.

NOTE

Guide to get your PAT

Create a project directory named your_model_dir and run the following commands,

The Clarifai SDKs will then create all the necessary files required for the deployment process inside
your_model_dir .

1 clarifai create model --type text-to-text --working-dir your_model_dir
2 cd your_model_dir

1 your_model_dir

https://docs.clarifai.com/
https://docs.clarifai.com/sdk/advance-model-operations/
https://docs.clarifai.com/python-sdk/sdk-overview/
https://docs.clarifai.com/clarifai-basics/authentication/personal-access-tokens

INFO

inference.py: The crucial file where users need to implement their Python code.

clarifai_config.yaml: Contains all necessary configurations for model test, build and upload

test.py: Predefined test cases to evaluate inference.py.

requirements.text: Equivalent to a normal Python project's requirements.txt.

Implementation
The next step involves the implementation of an inference class inside inference.py , for your custom
model. There are 2 functions inside the class that you must implement:

init: a method to load the model, called once.

predict: a function designed to generate predictions based on the provided inputs and inference
parameters. This method includes a docstring inherited from its parent, providing information on
input, parameters, and output types. Refer to the docstring to confirm that the outputs of this method
adhere to the correct Clarifai Output Type, as errors may occur otherwise.

Below is an example template of inference.py for a text-to-text model,

Python

2 ├── clarifai_config.yaml
3 ├── inference.py
4 ├── test.py
5 └── requirements.txt

1 class InferenceModel(TextToText):
2 """User model inference class."""
3
4 def __init__(self) -> None:
5 """
6 Load inference time artifacts that are called frequently .e.g. models,

tokenizers, etc.
7 in this method so they are loaded only once for faster inference.
8 """
9 # current directory

10 self.base_path: Path = os.path.dirname(__file__)
11
12 def predict(self, input_data: list,
13 inference_parameters: Dict[str, Union[str, float, int, bool]]) ->

list:

https://github.com/Clarifai/clarifai-python/blob/master/clarifai/models/model_serving/model_config/output.py

Consider a scenario where we are going to use a HuggingFace Text-To-Text model, the inference class
would look like this:

Python

14 """ Custom prediction function for `text-to-text` (also called as `text
generation`) model.

15
16 Args:
17 input_data (List[str]): List of text
18 inference_parameters (Dict[str, Union[str, float, int, bool]]): your

inference parameters
19
20 Returns:
21 list of TextOutput
22
23 """
24
25 raise NotImplementedError()

1 import os
2 from typing import Dict, Union
3 from clarifai.models.model_serving.model_config import *
4
5 import torch
6 from transformers import AutoTokenizer
7 import transformers
8
9 class InferenceModel(TextToText):

10 """User model inference class."""
11
12 def __init__(self) -> None:
13 """
14 Load inference time artifacts that are called frequently .e.g. models,

tokenizers, etc.
15 in this method so they are loaded only once for faster inference.
16 """
17 # current directory
18 self.base_path = os.path.dirname(__file__)
19 # where you save hf checkpoint in your working dir e.i. `your_model_dir`
20 model_path = os.path.join(self.base_path, "checkpoint")
21 self.tokenizer = AutoTokenizer.from_pretrained(model_path)
22 self.pipeline = transformers.pipeline(
23 "text-generation",
24 model=model_path,
25 torch_dtype=torch.float16,
26 device_map="auto",

Setup Configuration File
The clarifai_config.yaml contains all the required files for testing, building and uploading a model.

The config file will have the following structure,

The clarifai_model includes configurations necessary for the building, testing, and uploading process.
It comprises several attributes: clarifai_model_id , which specifies the model ID on the platform;
clarifai_user_app_id , which denotes the user ID and App ID on the platform, separated by '/'; and
description , providing a brief model description. These attributes are crucial for the model upload

27)
28
29 def predict(self, input_data: list,
30 inference_parameters: Dict[str, Union[str, float, int]]) -> list:
31 """ Custom prediction function for `text-to-text` (also called as `text

generation`) model.
32
33 Args:
34 input_data (List[str]): List of text
35 inference_parameters (Dict[str, Union[str, float, int]]): your inference

parameters
36
37 Returns:
38 list of TextOutput
39
40 """
41 output_sequences = self.pipeline(
42 input_data,
43 eos_token_id=self.tokenizer.eos_token_id,
44 **inference_parameters)
45
46 # wrap outputs in Clarifai defined output
47 return [TextOutput(each[0]) for each in output_sequences]

1 clarifai_model:
2 clarifai_model_id:
3 clarifai_user_app_id:
4 description:
5 inference_parameters: (*)
6 labels: (*)
7 type: (**)
8 serving_backend:
9 triton: (***)

10 max_batch_size:
11 image_shape:

process, though if not provided, they can be passed during the upload command. Additionally, there are
optional attributes: inference_parameters, allowing customization of model prediction methods for
testing and uploading purposes; and labels, requiring manual insertion of concept names essential for
specific model types. The type attribute, generated upon initializing the working directory, must not be
modified.

For serving configurations, the serving_backend section contains custom settings, including triton
options such as max_batch_size , determining the maximum number of inputs for prediction, and
image_shape , applicable solely for image input models, specifying the width and height of input images.
The default max_batch_size is 1, but if the model supports batch inference, it can be adjusted for
enhanced GPU performance. The image_shape default is [-1, -1], indicating acceptance of any image size.

Testing
This test serves two primary purposes aimed at optimizing the testing and validation procedures:

Implementation Validation: Before proceeding with the build or upload operations, users can utilize
this feature to conduct a comprehensive assessment of their implementation. This step ensures the
accuracy and preparedness of the model for deployment. The test encompasses the validation of
custom configuration settings outlined in the clarifai_config.yaml file.

Inference Parameter Management: Users are provided with the convenience of adding or updating
inference parameters directly within the clarifai_config.yaml file. Additionally, the system
performs automatic validation during the inference process to guarantee the accuracy and
compatibility of these parameters with the model's requirements. The test ensures that only defined
inference parameters with appropriate values can be utilized.

Example test case for text input,

Python

Click here to know more about test files and clarifai_config.yaml file.

Each model built for inference with triton requires certain dependencies & dependency versions to be
installed for successful inference execution. Therefore the next step is to add the required dependencies

1 def test_text_input(self):
2 text: list = ["Tell me about Clarifai", "How deploy model to Clarifai"]
3 outputs = self.model.predict(text, temperature=0.9) # In term of inference

parameters for the above example, it will PASSED
4 outputs = self.model.predict(text, top_k=10) # And this one will FAILED since

`top_k` param is not defined when init self.model

https://github.com/Clarifai/clarifai-python/blob/master/clarifai/models/model_serving/docs/concepts.md#testpy

into requirements.txt file.

Deployment
In order to prepare for deployment we will have to build the files. This process will generate *.clarifai
zip file which contains all the necessary files to get your model to work on the Clarifai platform.

NOTE

You need to upload your built file to a cloud storage service in order to obtain a direct download URL
for the next step.

Since we have all the files ready let’s proceed to deploy the model using the following commands,

Example
For the demo, we are going to upload an open-source visual segmentation model from Huggingface. Run
the following commands step by step on a Google Colab instance or your local machine.

The first step is to install the required libraries,

1 clarifai
2 torch=2.1.1
3 transformers==4.36.2
4 accelerate==0.26.1

1 clarifai build model

1 clarifai login

Output

1 clarifai upload model --url <url> --user-app <your_user_id>/<your_app_id> --id
<your_model_id>

Using the Clarifai CLI users can initialize a model from the Clarifai Examples repository into your working
directory by executing the following,

NOTE

The --working-dir parameter will create a directory.

From the list of available models let’s choose a visual segmenter as an example,

The CLI will then clone all the required files for visual_segmenter directly onto the working directory.

Once we are inside the my_dir directory, we can download the model checkpoint from HuggingFace into
a checkpoint directory.

Next, install the dependencies from the requirements.txt file,

Before moving on to the build process we have to make some changes in the clarifai_config.yml file.
You will have to add clarifai_model_id and clarifai_user_app_id with the respective values.
Example changes made to the clarifai_config.yml file are given below,

1 pip install clarifai

1 clarifai create model --from-example --working-dir my_dir

Image Output

Image Output

1 huggingface-cli download mattmdjaga/segformer_b2_clothes --local-dir
my_dir/checkpoint --local-dir-use-symlinks False --exclude *.safetensors
optimizer.pt

Output

1 pip install -r my_dir/requirements.txt

After installing the dependencies and modifying the config file, we have to build the model and upload the
model.clarifai file to cloud storage.

NOTE

You can use the model from this URL for the model upload demo:
https://s3.amazonaws.com/samples.clarifai.com/model.clarifai .

Now let's log in to the Clarifai using CLI,

1 clarifai_model:
2 clarifai_model_id: 'segmentation_model'
3 clarifai_user_app_id: '8tzpjy1a841y/transfer_learn_3'
4 description: ''
5 inference_parameters: []
6 labels:
7 - background
8 - hat
9 - hair

10 - sunglass
11 - upper-clothes
12 - skirt
13 - pants
14 - dress
15 - belt
16 - left-shoe
17 - right-shoe
18 - face
19 - left-leg
20 - right-leg
21 - left-arm
22 - right-arm
23 - bag
24 - scarf
25 type: visual-segmenter
26 serving_backend:
27 triton:
28 max_batch_size: 4

1 clarifai build model ./my_dir

Output

The last and final step is to upload the model onto Clarifai’s platform,

What did you think of this doc?

This section is optional ✌

Send your review!

Edit this page

1 clarifai login

Output

1 clarifai upload model my_dir --url
https://s3.amazonaws.com/samples.clarifai.com/model.clarifai

Output

https://github.com/Clarifai/docs/blob/main/docs/sdk/advance-model-operations/model-upload.md
https://github.com/Clarifai/docs/blob/main/docs/sdk/advance-model-operations/model-upload.md

© 2024 Clarifai, Inc. All rights reserved

Build your next AI app, test
and tune popular LLMs
models, and much more.

Get started for free

https://clarifai.com/explore
https://github.com/Clarifai
https://github.com/Clarifai
https://twitter.com/clarifai
https://twitter.com/clarifai
https://discord.gg/WgUvPK4pVD
https://discord.gg/WgUvPK4pVD
https://www.youtube.com/@theworldsai
https://www.youtube.com/@theworldsai
https://www.linkedin.com/company/clarifai
https://www.linkedin.com/company/clarifai

