API Reference
Clarifai Python SDK API Reference
This is the API Reference documentation extracted from the source code.
User
class User(user_id='', **kwargs)
User is a class that provides access to Clarifai API endpoints related to user information.
User.__init__()
__init__(user_id='', **kwargs)
Initializes a User object.
Parameters
- user_id (str) – The user ID for the user to interact with.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper.
User.app()
app(app_id, **kwargs)
Returns an App object for the specified app ID.
Parameters
- app_id (str) – The app ID for the app to interact with.
- **kwargs – Additional keyword arguments to be passed to the App.
Returns
An App object for the specified app ID.
Return type
App
Example
from clarifai.client.user import User
app = User("user_id").app("app_id")
User.create_app()
create_app(app_id, base_workflow='Language-Understanding', **kwargs)
Creates an app for the user.
Parameters
- app_id (str) – The app ID for the app to create.
- base_workflow (str) – The base workflow to use for the app.(Examples: ‘Universal’, ‘Empty’, ‘General’)
- **kwargs – Additional keyword arguments to be passed to the App.
Returns
An App object for the specified app ID.
Return type
App
Example
from clarifai.client.user import User
client = User(user_id="user_id")
app = client.create_app(app_id="app_id",base_workflow="Universal")
User.create_runner()
create_runner(runner_id, labels=List[str], description='')
Creates a runner
Parameters
- runner_id (str) – The Id of runner to create.
- labels (List[str]) – Labels to match runner.
- description (str) – Description of Runner.
Returns
A runner object for the specified Runner ID.
Return type
Runner
Example
from clarifai.client.user import User
client = User(user_id="user_id")
runner = client.create_runner(runner_id="runner_id", labels=["label to link runner"], description="laptop runner")
User.delete_app()
delete_app(app_id)
Deletes an app for the user.
Parameters
- app_id (str) – The app ID for the app to delete.
Return type
None
Example
from clarifai.client.user import User
user = User("user_id").delete_app("app_id")
User.delete_runner()
delete_runner(runner_id)
Deletes all specified runner ids.
Parameters
- runner_ids (str) – List of runners to delete.
Example
from clarifai.client.user import User
client = User(user_id="user_id")
client.delete_runner(runner_id="runner_id")
User.list_apps()
list_apps(filter_by={})
Lists all the apps for the user.
Parameters
- filter_by (dict) – A dictionary of filters to be applied to the list of apps.
Returns
A list of App objects for the user.
Return type
List of App
Example
from clarifai.client.user import User
apps = User("user_id").list_apps()
User.list_runners()
list_runners(filter_by={})
List all runners for the user.
Parameters
- filter_by (dict) – A dictionary of filters to apply to the list of runners.
Returns
A list of Runner objects for the runners.
Return type
List[Runner]
Example
from clarifai.client.user import User
client = User(user_id="user_id")
all_runners= client.list_runners()
User.runner()
runner(runner_id)
Returns a Runner object if exists.
Parameters
- runner_id (str) – The runner ID to interact with.
Returns
A Runner object for the existing runner ID.
Return type
Runner
Example
from clarifai.client.user import User
client = User(user_id="user_id")
runner = client.runner(runner_id="runner_id")
App
class App(url_init='', app_id='', **kwargs)
App is a class that provides access to Clarifai API endpoints related to App information.
App.__init__()
__init__(url_init='', app_id='', **kwargs)
Initializes an App object.
Parameters
- url_init (str) – The URL to initialize the app object.
- app_id (str) – The App ID for the App to interact with.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper:
- name (str): The name of the app.
- description (str): The description of the app.
App.create_dataset()
create_dataset(dataset_id, **kwargs)
Creates a dataset for the app.
Parameters
- dataset_id (str) – The dataset ID for the dataset to create.
- **kwargs – Additional keyword arguments to be passed to the Dataset.
Returns
A Dataset object for the specified dataset ID.
Return type
Dataset
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
dataset = app.create_dataset(dataset_id="dataset_id")
App.create_model()
create_model(model_id, \*\*kwargs)
Creates a model for the app.
Parameters
- model_id (str) – The model ID for the model to create.
- **kwargs – Additional keyword arguments to be passed to the Model.
Returns
A Model object for the specified model ID.
Return type
Model
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
model = app.create_model(model_id="model_id")
App.create_module()
create_module(module_id, description, **kwargs)
Creates a module for the app.
Parameters
- module_id (str) – The module ID for the module to create.
- description (str) – The description of the module to create.
- **kwargs – Additional keyword arguments to be passed to the module.
Returns
A Module object for the specified module ID.
Return type
Module
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
module = app.create_module(module_id="module_id")
App.create_workflow()
create_workflow(workflow_id, **kwargs)
Creates a workflow for the app.
Parameters
- workflow_id (str) – The workflow ID for the workflow to create.
- **kwargs – Additional keyword arguments to be passed to the workflow.
Returns
A Workflow object for the specified workflow ID.
Return type
Workflow
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
workflow = app.create_workflow(workflow_id="workflow_id")
App.dataset()
dataset(dataset_id, **kwargs)
Returns a Dataset object for the existing dataset ID.
Parameters
- dataset_id (str) – The dataset ID for the dataset to interact with.
Returns
A Dataset object for the existing dataset ID.
Return type
Dataset
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
dataset = app.dataset(dataset_id="dataset_id")
App.delete_dataset()
delete_dataset(dataset_id)
Deletes a dataset for the user.
Parameters
- dataset_id (str) – The dataset ID for the app to delete.
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
app.delete_dataset(dataset_id="dataset_id")
App.delete_model()
delete_model(model_id)
Deletes a model for the user.
Parameters
- model_id (str) – The model ID for the app to delete.
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
app.delete_model(model_id="model_id")
App.delete_module()
delete_module(module_id)
Deletes a module for the user.
Parameters
- module_id (str) – The module ID for the app to delete.
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
app.delete_module(module_id="module_id")
App.delete_workflow()
delete_workflow(workflow_id)
Deletes a workflow for the user.
Parameters
- workflow_id (str) – The workflow ID for the app to delete.
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
app.delete_workflow(workflow_id="workflow_id")
App.inputs()
inputs()
Returns an Input object.
Returns
An input object.
Return type
Inputs
App.list_concepts()
list_concepts()
Lists all the concepts for the app.
App.list_datasets()
list_datasets()
Lists all the datasets for the app.
Returns
A list of Dataset objects for the datasets in the app.
Return type
List[Dataset]
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
all_datasets = app.list_datasets()
App.list_installed_module_versions()
list_installed_module_versions(filter_by={})
Lists all installed module versions in the app.
Parameters
filter_by (dict) – A dictionary of filters to apply to the list of installed module versions.
Returns
A list of Module objects for the installed module versions in the app.
Return type
List[Module]
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
all_installed_module_versions = app.list_installed_module_versions()
App.list_models()
list_models(filter_by={}, only_in_app=True)
Lists all the available models for the user.
Parameters
- filter_by (dict) – A dictionary of filters to apply to the list of models.
- only_in_app (bool) – If True, only return models that are in the app.
Returns
A list of Model objects for the models in the app.
Return type
List[Model]
Example
from clarifai.client.user import User
app = User(user_id="user_id").app(app_id="app_id")
all_models = app.list_models()
App.list_modules()
list_modules(filter_by={}, only_in_app=True)
Lists all the available modules for the user.
Parameters
- filter_by (dict) – A dictionary of filters to apply to the list of modules.
- only_in_app (bool) – If True, only return modules that are in the app.
Returns
A list of Module objects for the modules in the app.
Return type
List[Module]
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
all_modules = app.list_modules()
App.list_workflows()
list_workflows(filter_by={}, only_in_app=True)
Lists all the available workflows for the user.
Parameters
- filter_by (dict) – A dictionary of filters to apply to the list of workflows.
- only_in_app (bool) – If True, only return workflows that are in the app.
Returns
A list of Workflow objects for the workflows in the app.
Return type
List Workflow
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
all_workflows = app.list_workflows()
App.model()
model(model_id, model_version_id='', **kwargs)
Returns a Model object for the existing model ID.
Parameters
- model_id (str) – The model ID for the model to interact with.
- model_version_id (str) – The model version ID for the model version to interact with.
Returns
A Model object for the existing model ID.
Return type
Model
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
model_v1 = app.model(model_id="model_id", model_version_id="model_version_id")
App.module()
module(module_id, module_version_id='', **kwargs)
Returns a Module object for the existing module ID.
Parameters
- module_id (str) – The module ID for the module to interact with.
- module_version_id (str) – The module version ID for the module version to interact with.
Returns
A Module object for the existing module ID.
Return type
Module
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
module = app.module(module_id="module_id", module_version_id="module_version_id")
App.workflow()
workflow(workflow_id, **kwargs)
Returns a workflow object for the existing workflow ID.
Parameters
- workflow_id (str) – The workflow ID for the workflow to interact with.
Returns
A Workflow object for the existing workflow ID.
Return type
Workflow
Example
from clarifai.client.app import App
app = App(app_id="app_id", user_id="user_id")
workflow = app.workflow(workflow_id="workflow_id")
Dataset
class Dataset(url_init='', dataset_id='', **kwargs)
Dataset.__init__()
Dataset is a class that provides access to Clarifai API endpoints related to Dataset information.
__init__(url_init='', dataset_id='', **kwargs)
Initializes a Dataset object.
Parameters
- url_init (str) – The URL to initialize the dataset object.
- dataset_id (str) – The Dataset ID within the App to interact with.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper.
Dataset.export()
export(save_path, archive_url=None, local_archive_path=None, split=None)
Exports the Clarifai protobuf dataset to a local archive.
Parameters
- save_path (str) – The path to save the archive to.
- archive_url (str) – The URL to the Clarifai protobuf archive.
- local_archive_path (str) – The path to the local Clarifai protobuf archive.
- split (str) – Export dataset inputs in the directory format {split}/{input_type}. Default is all.
Example
from clarifai.client.dataset import Dataset
Dataset().export(save_path='output.zip', local_archive_path='clarifai-data-protobuf.zip')
Note: Currently only supports export of dataset inputs.
Dataset.upload_dataset()
upload_dataset(task, split, module_dir=None, dataset_loader=None, chunk_size=128)
Uploads a dataset to the app.
Parameters
- task (str) – task type(text_clf, visual-classification, visual_detection, visual_segmentation, visual-captioning)
- split (str) – split type(train, test, val)
- module_dir (str) – path to the module directory
- dataset_loader (str) – name of the dataset loader
- chunk_size (int) – chunk size for concurrent upload of inputs and annotations
Dataset.upload_from_csv()
upload_from_csv(csv_path, input_type='text', labels=True, chunk_size=128)
Uploads dataset from a CSV file.
Parameters
- csv_path (str) – path to the csv file
- input_type (str) – type of the dataset(text, image)
- labels (bool) – True if csv file has labels column
- chunk_size (int) – chunk size for concurrent upload of inputs and annotations
Example
from clarifai.client.dataset import Dataset
dataset = Dataset(user_id = 'user_id', app_id = 'demo_app', dataset_id = 'demo_dataset')
dataset.upload_from_csv(csv_path='csv_path', labels=True)
Note: csv file should have either one(input) or two columns(input, labels).
Dataset.upload_from_folder()
upload_from_folder(folder_path, input_type, labels=False, chunk_size=128)
Upload dataset from folder.
Parameters
- folder_path (str) – Path to the folder containing images.
- input_type (str) – type of the dataset(text, image)
- labels (bool) – True if folder name is the label for the inputs
- chunk_size (int) – chunk size for concurrent upload of inputs and annotations
Example
from clarifai.client.dataset import Dataset
dataset = Dataset(user_id = 'user_id', app_id = 'demo_app', dataset_id = 'demo_dataset')
dataset.upload_from_folder(folder_path='folder_path', input_type='text', labels=True)
Note: The filename is used as the input_id.
Input
class Inputs(user_id='', app_id='', logger_level='INFO', **kwargs)
Inputs is a class that provides access to Clarifai API endpoints related to Input information.
Inputs.__init__()
__init__(user_id='', app_id='', logger_level='INFO', **kwargs)
Initializes an Input object.
Parameters
- user_id (str) – A user ID for authentication.
- app_id (str) – An app ID for the application to interact with.
- **kwargs – Additional keyword arguments to be passed to the Input
Inputs.delete_inputs()
delete_inputs(inputs)
Delete list of input objects from the app.
Parameters
- input_ids (Input) – List of input objects to delete.
Example
from clarifai.client.user import User
input_obj = User(user_id="user_id").app(app_id="app_id").inputs()
input_obj.delete_inputs(input_obj.list_inputs())
Inputs.get_annotation_proto()
get_annotation_proto(input_id, label, annotations)
Create an annotation proto for each bounding box, label input pair.
Parameters
- input_id (str) – The input ID for the annotation to create.
- label (str) – annotation label
- annotations (List) – a list of a single bbox’s coordinates. # Annotations ordering: [xmin, ymin, xmax, ymax]
Returns
An annotation object for the specified input ID.
Example
from clarifai.client.input import Input
input_obj = Input()
input_obj.get_annotation_proto(input_id='demo', label='demo', annotations=[x_min, y_min, x_max, y_max])
Inputs.get_image_inputs_from_folder()
get_image_inputs_from_folder(folder_path, dataset_id=None, labels=False)
Create input protos for image data type from folder.
Parameters
- folder_path (str) – Path to the folder containing images.
Returns
A list of Input objects for the specified folder.
Return type
List of Input
Example
from clarifai.client.input import Input
input_obj = Input()
input_protos = input_obj.get_image_inputs_from_folder(folder_path='demo_folder')
Inputs.get_input_from_bytes()
get_input_from_bytes(input_id, image_bytes=None, video_bytes=None, audio_bytes=None, dataset_id=None, **kwargs)
Create input proto from bytes.
Parameters
- input_id (str) – The input ID for the input to create.
- image_bytes (str) – The bytes for the image.
- video_bytes (str) – The bytes for the video.
- audio_bytes (str) – The bytes for the audio.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
An Input object for the specified input ID.
Return type
Input
Example
from clarifai.client.input import Input
input_obj = Input()
image = open('demo.jpg', 'rb').read()
video = open('demo.mp4', 'rb').read()
input_proto = input_obj.get_input_from_bytes(input_id = 'demo',image_bytes =image, video_bytes=video)
Inputs.get_input_from_file()
get_input_from_file(input_id, image_file=None, video_file=None, audio_file=None, dataset_id=None, **kwargs)
Create input proto from files.
Parameters
- input_id (str) – The input ID for the input to create.
- image_file (str) – The url for the image.
- video_file (str) – The url for the video.
- audio_file (str) – The url for the audio.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
An Input object for the specified input ID.
Return type
Input
Example
from clarifai.client.input import Input
input_obj = Input()
input_proto = input_obj.get_input_from_file(input_id = 'demo', video_file='file_path')
Inputs.get_input_from_url()
get_input_from_url(input_id, image_url=None, video_url=None, audio_url=None, text_url=None, dataset_id=None, **kwargs)
Create input proto from URL.
Parameters
- input_id (str) – The input ID for the input to create.
- image_url (str) – The url for the image.
- video_url (str) – The url for the video.
- audio_url (str) – The url for the audio.
- text_url (str) – The url for the text.
- dataset_id (str): The dataset ID for the dataset to add the input to.
Returns
An Input object for the specified input ID.
Return type
Input
Example
from clarifai.client.input import Input
input_obj = Input()
input_proto = input_obj.get_input_from_url(input_id = 'demo', image_url='https://samples.clarifai.com/metro-north.jpg')
Inputs.get_inputs_from_csv()
get_inputs_from_csv(csv_path='', input_type= 'text', csv_type='raw', dataset_id=None, labels=True)
Create input protos from CSV.
Parameters
- csv_path (str) – Path to the csv file.
- input_type (str) – Type of input. Options: ‘text’, ‘image’, ‘video’, ‘audio’.
- csv_type (str) – Type of csv file. Options: ‘raw’, ‘url’, ‘file_path’.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
- labels (str) – True if csv file has labels column.
Returns
List of inputs
Return type
inputs
Example
from clarifai.client.input import Input
input_obj = Input()
input_protos = input_obj.get_inputs_from_csv(csv_path='filepath', input_type='text', csv_type='raw')
Inputs.get_mask_proto()
get_mask_proto(input_id, label, polygons)
Create an annotation proto for each polygon box, label input pair.
Parameters
- input_id (str) – The input ID for the annotation to create.
- label (str) – annotation label
- polygons (List) – Polygon x,y points iterable
Returns
An annotation object for the specified input ID.
Example
from clarifai.client.input import Input
input_obj = Input()
input_obj.get_mask_proto(input_id='demo', label='demo', polygons=[[[x,y],...,[x,y]],...])
Inputs.get_text_input()
get_text_input(input_id, raw_text, dataset_id=None, **kwargs)
Create input proto for text data type from raw text.
Parameters
- input_id (str) – The input ID for the input to create.
- raw_text (str) – The raw text input.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
- **kwargs – Additional keyword arguments to be passed to the Input
Returns
An Input object for the specified input ID.
Return type
Text
Example
from clarifai.client.input import Input
input_obj = Input()
input_protos = input_obj.get_text_input(input_id = 'demo', raw_text = 'This is a test')
Inputs.get_text_inputs_from_folder()
get_text_inputs_from_folder(folder_path, dataset_id=None, labels=False)
Create input protos for text data type from folder.
Parameters
- folder_path (str) – Path to the folder containing text.
Returns
A list of Input objects for the specified folder.
Return type
list of Input
Example
from clarifai.client.input import Input
input_obj = Input()
input_protos = input_obj.get_text_inputs_from_folder(folder_path='demo_folder')
Inputs.list_inputs()
list_inputs()
Lists all the inputs for the app.
Returns
A list of Input objects for the app.
Return type
list of Input
Example
from clarifai.client.user import User
input_obj = User(user_id="user_id").app(app_id="app_id").inputs()
input_obj.list_inputs()
Inputs.upload_annotations()
upload_annotations(batch_annot, show_log=True)
Upload image annotations to app.
Parameters
- batch_annot – annot batch protos
Returns
Return type
Inputs.upload_from_bytes()
upload_from_bytes(input_id, image_bytes=None, video_bytes=None, audio_bytes=None, dataset_id=None, **kwargs)
Upload input from bytes.
Parameters
- input_id (str) – The input ID for the input to create.
- image_bytes (str) – The bytes for the image.
- video_bytes (str) – The bytes for the video.
- audio_bytes (str) – The bytes for the audio.
- text_bytes(str) – The bytes for the text.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
Job id for the upload request.
Return type
input_job_id
Example
from clarifai.client.input import Input
input_obj = Input(user_id = 'user_id', app_id = 'demo_app')
image = open('demo.jpg', 'rb').read()
input_obj.upload_from_bytes(input_id='demo', image_bytes=image)
Inputs.upload_from_file()
upload_from_file(input_id, image_file=None, video_file=None, audio_file=None, dataset_id=None, **kwargs)
Upload input from file.
Parameters
- input_id (str) – The input ID for the input to create.
- image_file (str) – The file for the image.
- video_file (str) – The file for the video.
- audio_file (str) – The file for the audio.
- text_file(str) – The file for the text.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
Job id for the upload request.
Return type
input_job_id
Example
from clarifai.client.input import Input
input_obj = Input(user_id = 'user_id', app_id = 'demo_app')
input_obj.upload_from_file(input_id='demo', audio_file='demo.mp3')
Inputs.upload_from_url()
upload_from_url(input_id, image_url=None, video_url=None, audio_url=None, text_url=None, dataset_id=None, **kwargs)
Upload input from URL.
Parameters
- input_id (str) – The input ID for the input to create.
- image_url (str) – The url for the image.
- video_url (str) – The url for the video.
- audio_url (str) – The url for the audio.
- text_url (str) – The url for the text.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
job id for the upload request.
Return type
input_job_id
Example
from clarifai.client.input import Input
input_obj = Input(user_id = 'user_id', app_id = 'demo_app')
input_obj.upload_from_url(input_id='demo', image_url='https://samples.clarifai.com/metro-north.jpg')
Inputs.upload_inputs()
upload_inputs(inputs, show_log=True)
Upload list of input objects to the app.
Parameters
- inputs (list) – List of input objects to upload.
- show_log (bool) – Show upload status log.
Returns
Job id for the upload request.
Return type
input_job_id
Inputs.upload_text()
upload_text(input_id, raw_text, dataset_id=None, **kwargs)
Upload text from raw text.
Parameters
- input_id (str) – The input ID for the input to create.
- raw_text (str) – The raw text.
- dataset_id (str) – The dataset ID for the dataset to add the input to.
Returns
Job id for the upload request.
Return type
input_job_id (str)
Example
from clarifai.client.input import Input
input_obj = Input(user_id = 'user_id', app_id = 'demo_app')
input_obj.upload_text(input_id = 'demo', raw_text = 'This is a test')
Lister
class Lister(page_size=16)
Lister class for obtaining paginated results from the Clarifai API.
Lister.__init__()
__init__(page_size=16)
Lister.list_all_pages_generator()
list_all_pages_generator(endpoint, proto_message, request_data)
Lists all pages of a resource.
Parameters
- endpoint (Callable) – The endpoint to call.
- proto_message (Any) – The proto message to use.
- request_data (dict) – The request data to use.
Yields
response_dict – The next item in the listing.
Model
class Model(url_init='', model_id='', model_version={'id': ''}, output_config={'min_value': 0}, **kwargs)
Model is a class that provides access to Clarifai API endpoints related to Model information.
Model.__init__()
__init__(url_init='', model_id='', model_version={'id': ''}, output_config={'min_value': 0}, **kwargs)
Initializes a Model object.
Parameters
- url_init (str) – The URL to initialize the model object.
- model_id (str) – The Model ID to interact with.
- model_version (dict) – The Model Version to interact with.
- output_config (dict) – The output config to interact with.
- min_value (float): The minimum value of the prediction confidence to filter.
- max_concepts (int): The maximum number of concepts to return.
- select_concepts (list[Concept]): The concepts to select.
- sample_ms (int): The number of milliseconds to sample.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper.
Model.list_versions()
list_versions()
Lists all the versions for the model.
Returns
A list of Model objects for the versions of the model.
Return type
List[Model]
Example
from clarifai.client.model import Model
model = Model("model_url") # Example URL: https://clarifai.com/clarifai/main/models/general-image-recognition
# or
model = Model(model_id='model_id', user_id='user_id', app_id='app_id')
all_model_versions = model.list_versions()
Model.predict()
predict(inputs)
Predicts the model based on the given inputs.
Parameters
- inputs (list[Input]) – The inputs to predict, must be less than 128.
Model.predict_by_bytes()
predict_by_bytes(input_bytes, input_type)
Predicts the model based on the given bytes.
Parameters
- input_bytes (bytes) – File Bytes to predict on.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio’.
Example
from clarifai.client.model import Model
model = Model("https://clarifai.com/anthropic/completion/models/claude-v2")
model_prediction = model.predict_by_bytes(b'Write a tweet on future of AI', 'text')
Model.predict_by_filepath()
predict_by_filepath(filepath, input_type)
Predicts the model based on the given file path.
Parameters
- filepath (str) – The file path to predict.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio.
Example
from clarifai.client.model import Model
model = Model("model_url") # Example URL: https://clarifai.com/clarifai/main/models/general-image-recognition
# or
model = Model(model_id='model_id', user_id='user_id', app_id='app_id')
model_prediction = model.predict_by_filepath('/path/to/image.jpg', 'image')
model_prediction = model.predict_by_filepath('/path/to/text.txt', 'text')
Model.predict_by_url()
predict_by_url(url, input_type)
Predicts the model based on the given URL.
Parameters
- url (str) – The URL to predict.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio.
Example
from clarifai.client.model import Model
model = Model("model_url") # Example URL: https://clarifai.com/clarifai/main/models/general-image-recognition
# or
model = Model(model_id='model_id', user_id='user_id', app_id='app_id')
model_prediction = model.predict_by_url('url', 'image')
Workflow
class Workflow(url_init='', workflow_id='', workflow_version={'id': ''}, output_config={'min_value': 0}, **kwargs)
Workflow is a class that provides access to Clarifai API endpoints related to Workflow information.
Workflow.__init__()
__init__(url_init='', workflow_id='', workflow_version={'id': ''}, output_config={'min_value': 0}, **kwargs)
Initializes a Workflow object.
Parameters
- url_init (str) – The URL to initialize the workflow object.
- workflow_id (str) – The Workflow ID to interact with.
- workflow_version (dict) – The Workflow Version to interact with.
- output_config (dict) – The output config to interact with.
- min_value (float): The minimum value of the prediction confidence to filter.
- max_concepts (int): The maximum number of concepts to return.
- select_concepts (list[Concept]): The concepts to select.
- sample_ms (int): The number of milliseconds to sample.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper.
Workflow.list_versions()
list_versions()
Lists all the versions of the workflow.
Returns
A list of Workflow objects.
Return type
list[Workflow]
Example
from clarifai.client.workflow import Workflow
workflow = Workflow(user_id='user_id', app_id='app_id', workflow_id='workflow_id')
workflow_versions = workflow.list_versions()
Workflow.predict()
predict(inputs)
Predicts the workflow based on the given inputs.
Parameters
- inputs (list[Input]) – The inputs to predict.
Workflow.predict_by_bytes()
predict_by_bytes(input_bytes, input_type)
Predicts the workflow based on the given bytes.
Parameters
- input_bytes (bytes) – Bytes to predict on.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio.
Workflow.predict_by_filepath()
predict_by_filepath(filepath, input_type)
Predicts the workflow based on the given filepath.
Parameters
- filepath (str) – The filepath to predict.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio.
Example
from clarifai.client.workflow import Workflow
workflow = Workflow("workflow_url") # Example: https://clarifai.com/clarifai/main/workflows/Face-Sentiment
# or
workflow = Workflow(user_id='user_id', app_id='app_id', workflow_id='workflow_id')
workflow_prediction = workflow.predict_by_filepath('filepath', 'image')
Workflow.predict_by_url()
predict_by_url(url, input_type)
Predicts the workflow based on the given URL.
Parameters
- url (str) – The URL to predict.
- input_type (str) – The type of input. Can be ‘image’, ‘text’, ‘video’ or ‘audio.
Example
from clarifai.client.workflow import Workflow
workflow = Workflow("workflow_url") # Example: https://clarifai.com/clarifai/main/workflows/Face-Sentiment
# or
workflow = Workflow(user_id='user_id', app_id='app_id', workflow_id='workflow_id')
workflow_prediction = workflow.predict_by_url('url', 'image')
Module
class Module(url_init='', module_id='', module_version={'id': ''}, \*\*kwargs)
Module is a class that provides access to Clarifai API endpoints related to Module information.
Module.__init__()
__init__(url_init='', module_id='', module_version={'id': ''}, **kwargs)
Initializes a Module object.
Parameters
- url_init (str) – The URL to initialize the module object.
- module_id (str) – The Module ID to interact with.
- module_version (dict) – The Module Version to interact with.
- **kwargs – Additional keyword arguments to be passed to the ClarifaiAuthHelper.
Module.list_versions()
list_versions()
Lists all the module versions for the module.
Returns
A list of Module objects for versions of the module.
Return type
List[Module]
Example
from clarifai.client.module import Module
module = Module(module_id='module_id', user_id='user_id', app_id='app_id')
all_Module_versions = module.list_versions()
Utils
class Chunker(seq, size)
Split an input sequence into small chunks.
Chunker.__init__()
__init__(seq, size)
Chunker.chunk()
chunk()
Chunk input sequence.
Exceptions
ApiError
class ApiError(resource, params, method, response=None)
API Server error
ApiClientError
class ApiClientError
API Client Error
UserError
class UserError
User Error