Custom KNN Face Classifier Workflow
Use facial recognition to identify individual people
Let's say you want to build a face recognition system that is able to differentiate between persons of whom you only have a few samples (per person). Machine learning models generally require a large inputs dataset to be able to classify the inputs well.
When a large dataset is the luxury you do not have, we recommend using our KNN Classifier Model, which uses k-nearest neighbor search and plurality voting amongst the nearest neighbors to classify new instances. It's recommended when you only have a small dataset like one input per concept.
In this walkthrough, you'll learn how to create a KNN classifier that's going to work based off the Clarifai's base Face model. The whole process below is going to be done programmatically, using the Clarifai's powerful API.
Each of the steps below can also be done manually on the Clarifai Portal.
Create a New Application
The first step is manual: in the Clarifai Portal, create a new application with Face selected as the Base Workflow.
The initialization code used in the following examples is outlined in detail on the client installation page.
Add Images
Add images that contain the faces you want to use as a training set.
Since the application's base model is Face, after adding an image, faces are automatically located and are available to be annotated.
- gRPC Python
#############################################################################
# In this section, we set the user authentication, app ID, and the URLs of
# the images we want to add. Change these strings to run your own example.
#############################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
# Change these to add your own images
IMAGE_URL_1 = 'https://samples.clarifai.com/model-gallery/images/face-001.jpg'
IMAGE_URL_2 = 'https://samples.clarifai.com/model-gallery/images/face-003.jpg'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
image_urls = [
IMAGE_URL_1,
IMAGE_URL_2
]
post_inputs_response = stub.PostInputs(
service_pb2.PostInputsRequest(
user_app_id=userDataObject,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(url=url)
)
)
for url in image_urls
]
),
metadata=metadata
)
if post_inputs_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(post_inputs_response.status))
Wait for Upload & Map IDs to URLs
Now we'll wait for all the images to finish uploading, and then create a dictionary mapping from an input ID to the URL. This will help us to annotate the proper image in the next step.
- gRPC Python
################################################################
# In this section, we set the user authentication and app ID.
# Change these strings to run your own example.
################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
import time
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
while True:
list_inputs_response = stub.ListInputs(
service_pb2.ListInputsRequest(
user_app_id=userDataObject,
page=1,
per_page=100
),
metadata=metadata
)
if list_inputs_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(list_inputs_response.status))
for the_input in list_inputs_response.inputs:
input_status_code = the_input.status.code
if input_status_code == status_code_pb2.INPUT_DOWNLOAD_SUCCESS:
continue
elif input_status_code in (status_code_pb2.INPUT_DOWNLOAD_PENDING, status_code_pb2.INPUT_DOWNLOAD_IN_PROGRESS):
print("Not all inputs have been downloaded yet. Checking again shortly.")
break
else:
error_message = (
str(input_status_code) + " " +
the_input.status.description + " " +
the_input.status.details
)
raise Exception(
f"Expected inputs to download, but got {error_message}. Full response: {list_inputs_response}"
)
else:
# Once all inputs have been successfully downloaded, break the while True loop
print("All inputs have been successfully downloaded.")
break
time.sleep(2)
input_id_to_url = {inp.id: inp.data.image.url for inp in list_inputs_response.inputs} # Note that we'll use input_id_to_url in the next List the Annotations example
print(list_inputs_response)
List the Annotations
Let's now print all the regions that the Face base model detected on our images.
The code below prints the annotations together with the model version ID and region ID. These two IDs will be needed in the next step to annotate using our custom concepts. We'll also need the base Face model ID, which is the one where model_version_id
equals to embedding_model_version_id
.
- gRPC Python
################################################################
# In this section, we set the user authentication and app ID.
# Change these strings to run your own example.
################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
list_annotations_response = stub.ListAnnotations(
service_pb2.ListAnnotationsRequest(
user_app_id=userDataObject,
list_all_annotations=True,
page=1,
per_page=100
),
metadata=metadata
)
if list_annotations_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(list_annotations_response.status))
for annotation in list_annotations_response.annotations:
if not annotation.data or not annotation.data.regions:
continue
# Display results only for the base Face model.
if annotation.model_version_id != annotation.embed_model_version_id:
continue
for region in annotation.data.regions:
bbox = region.region_info.bounding_box
print(f"Face was detected on input ID {annotation.input_id} (URL: {input_id_to_url[annotation.input_id]})") # input_id_to_url is from the previous Wait for Upload & Map IDs to URLs method
print(f"\tRegion ID: {region.id}")
print(f"\tRegion location: left={bbox.left_col:.4f}, top={bbox.top_row:.4f}, right={bbox.right_col:.4f}, bottom={bbox.bottom_row:.4f}")
print(f"\tConfidence: {region.value:.2f}")
print(f"\tBase Face model version ID: {annotation.embed_model_version_id}")
print()
Post New Annotations
Let's use the above information to add annotations, in the form of a concept, to the detected face regions.
Input below the IDs from the previous call, and choose your concept ID and name that you want to annotate the region with (you may want to use e.g. person's name).
- gRPC Python
###################################################################################
# In this section, we set the user authentication, app ID, and the details of the
# annotations we want to add. Change these strings to run your own example.
##################################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
# Change these to add your own annotations
INPUT_ID = '509188e5bc4a458cba90c05ed41e669c'
EMBED_MODEL_VERSION_ID = 'fc3b8814fbe54533a3d80a1896dc9884'
REGION_ID = '521c21ac6a7df00d95eb91c670758763'
CONCEPT_ID = 'concept-id'
CONCEPT_NAME = 'concept-name'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
post_annotations_response = stub.PostAnnotations(
service_pb2.PostAnnotationsRequest(
user_app_id=userDataObject,
annotations=[
resources_pb2.Annotation(
input_id=INPUT_ID,
embed_model_version_id=EMBED_MODEL_VERSION_ID,
data=resources_pb2.Data(
regions=[
resources_pb2.Region(
id=REGION_ID,
data=resources_pb2.Data(
concepts=[
resources_pb2.Concept(
id=CONCEPT_ID,
name=CONCEPT_NAME,
value=1 # 1 means true, this concept is present
)
]
)
)
]
)
)
],
),
metadata=metadata
)
if post_annotations_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(post_annotations_response.status))
Create a KNN Model
Let's now create a KNN model using the concept IDs that were added above. The model type ID should be set to knn-concept
.
- gRPC Python
###################################################################################
# In this section, we set the user authentication, app ID, and the details of the
# KNN model we want to create. Change these strings to run your own example.
##################################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
# Change these to create your own KNN model
MODEL_ID = 'my-knn-face-classifier-model'
CONCEPT_ID_1 = 'concept-id-1'
CONCEPT_ID_2 = 'concept-id-2'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject,
models=[
resources_pb2.Model(
id=MODEL_ID,
model_type_id="knn-concept",
output_info=resources_pb2.OutputInfo(
data=resources_pb2.Data(
concepts=[
resources_pb2.Concept(id=CONCEPT_ID_1),
resources_pb2.Concept(id=CONCEPT_ID_2)
]
)
)
)
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(post_models_response.status))
Create a Workflow
One last step before making predictions: let's create a workflow that's going to map from the base Face model to our custom KNN model.
- gRPC Python
###################################################################################
# In this section, we set the user authentication, app ID, and the details of the
# workflow we want to create. Change these strings to run your own example.
##################################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
# Change these to create your own workflow
WORKFLOW_ID = 'detect-knn-workflow'
WORKFLOWNODE_ID_1 = 'face-v1.3-embed'
EMBEDDING_MODEL_ID = 'd02b4508df58432fbb84e800597b8959'
EMBEDDING_MODEL_VERSION_ID = '6ca3b762008e419583258aca49b88401'
WORKFLOWNODE_ID_2 = 'knn-classifier'
MODEL_ID = 'my-knn-face-classifier-model'
MODEL_VERSION_ID = '66cddf2be70543fab654cbe91724495c'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
post_workflows_response = stub.PostWorkflows(
service_pb2.PostWorkflowsRequest(
user_app_id=userDataObject,
workflows=[
resources_pb2.Workflow(
id=WORKFLOW_ID,
nodes=[
resources_pb2.WorkflowNode(
id=WORKFLOWNODE_ID_1,
model=resources_pb2.Model(
id=EMBEDDING_MODEL_ID, # This is the base Face model ID
model_version=resources_pb2.ModelVersion(
id=EMBEDDING_MODEL_VERSION_ID # This is the base Face model version ID
)
)
),
resources_pb2.WorkflowNode(
id=WORKFLOWNODE_ID_2,
model=resources_pb2.Model(
id=MODEL_ID,
model_version=resources_pb2.ModelVersion(
id=MODEL_VERSION_ID
)
)
),
]
)
]
),
metadata=metadata
)
if post_workflows_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Failed response, status: " + str(post_workflows_response.status))
Predict
We're going to run a prediction on the workflow created above.
- gRPC Python
###################################################################################
# In this section, we set the user authentication, app ID, and the details of the
# prediction we want to make. Change these strings to run your own example.
##################################################################################
USER_ID = 'YOUR_USER_ID_HERE'
# Your PAT (Personal Access Token) can be found in the Account's Security section
PAT = 'YOUR_PAT_HERE'
APP_ID = 'YOUR_APP_ID_HERE'
# Change these to run your own prediction
WORKFLOW_ID = 'detect-knn-workflow'
URL_TO_PREDICT_FACES_ON = 'https://samples.clarifai.com/model-gallery/images/face-005.jpg'
MODEL_ID = 'my-knn-face-classifier-model'
##########################################################################
# YOU DO NOT NEED TO CHANGE ANYTHING BELOW THIS LINE TO RUN THIS EXAMPLE
##########################################################################
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # The userDataObject is required when using a PAT
post_workflow_results_response = stub.PostWorkflowResults(
service_pb2.PostWorkflowResultsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
workflow_id=WORKFLOW_ID,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(
url=URL_TO_PREDICT_FACES_ON
)
)
)
]
),
metadata=metadata
)
# We get back one result per input. Since there's one input above, one input was returned
result = post_workflow_results_response.results[0]
for output in result.outputs:
# At this point, two outputs will be returned: one for the base Face model, and the other for our custom model.
# At this moment, we are only interested in the results of the latter model (if you want, you may also see the
# half-baked results of the base Face model, which is not a list of concepts, but an embedding vector)
if output.model.id != MODEL_ID:
continue
print(f"The prediction of the model ID `{output.model.id}` is:")
for concept in output.data.concepts:
print(f"\t{concept.name} (id: {concept.id}): {concept.value:.4f}")